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Abstract
Graph games provide the foundation for modeling and synthe-
sizing reactive processes. In the synthesis of stochastic reactive
processes, the traditional model is perfect-information stochastic
games, where some transitions of the game graph are controlled by
two adversarial players, and the other transitions are executed prob-
abilistically. We consider such games where the objective is the
conjunction of several quantitative objectives (specifiedas mean-
payoff conditions), which we refer to as generalized mean-payoff
objectives. The basic decision problem asks for the existence of
a finite-memory strategy for a player that ensures the general-
ized mean-payoff objective be satisfied with a desired probability
against all strategies of the opponent. A special case of thedeci-
sion problem is the almost-sure problem where the desired prob-
ability is 1. Previous results presented a semi-decision procedure
for ε-approximations of the almost-sure problem. In this work, we
show that both the almost-sure problem as well as the generalbasic
decision problem are coNP-complete, significantly improving the
previous results. Moreover, we show that in the case of 1-player
stochastic games, randomized memoryless strategies are sufficient
and the problem can be solved in polynomial time. In contrast, in
two-player stochastic games, we show that even with randomized
strategies exponential memory is required in general, and present a
matching exponential upper bound. We also study the basic deci-
sion problem with infinite-memory strategies and present compu-
tational complexity results for the problem. Our results are relevant
in the synthesis of stochastic reactive systems with multiple quan-
titative requirements.

Categories and Subject Descriptors F.2.2 [Computations on Dis-
crete Structures]

General Terms Verification, Algorithms

Keywords Stochastic games, Markov decision processes, Mean-
payoff.
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1. Introduction
Reactive systems are non-terminating processes that interact con-
tinually with a changing environment. Since such systems are non-
terminating, their behavior is described by infinite sequences of
events. The classical framework to model reactive systems with
controllable and uncontrollable events are games on graphs. In the
presence of uncertainties, we have stochastic reactive systems with
probability distributions over state changes. The performance re-
quirement on such systems, such as power consumption or latency,
can be represented by rewards (or costs) associated to the events
of the system, and a quantitative objective that aggregatesthe re-
wards of an execution to a single value. In several modeling do-
mains, however, there is not a single objective to be optimized, but
multiple, potentially dependent and conflicting goals. Forexample,
in the design of an embedded system, the goal may be to maxi-
mize average performance while minimizing average power con-
sumption. Similarly, in an inventory management system, the goal
would be to optimize the costs associated to maintaining each kind
of product [1, 31]. Thus it is relevant to study stochastic games with
multiple quantitative objectives.

Perfect-information stochastic games.A perfect-information
stochastic graph game [26], also known as turn-based stochastic
game or21

2-player graph game, consists of a finite directed graph
with three kinds of states (or vertices): player-Max, player-Min,
and probabilistic states. The game starts at an initial state, and
is played as follows: at player-Max states, playerMax chooses a
successor state; at player-Min states, playerMin (the adversary of
playerMax) does likewise; and at probabilistic states, a successor
state is chosen according to a fixed probability distribution. Thus
the result of playing the game forever is an infinite path through the
graph. If there are no probabilistic states, we refer to the game as
a 2-player graph game; if there are no player-Min states, we refer
to the (11

2-player) game as a Markov decision process (MDP); if
there are no probabilistic states and no player-Min states, then the
(1-player) game is a standard graph.

The class of 2-player graph games has been used for a long
time to synthesize non-stochastic reactive systems [10, 42, 45]:
a reactive system and its environment represent the two play-
ers, whose states and transitions are specified by the vertices and
edges of a game graph. Similarly, MDPs have been used to model
stochastic processes without adversary [31, 43]. Consequently, 21

2-
player graph games, which subsume both 2-player graph gamesand
MDPs, provide the theoretical foundation to model stochastic reac-
tive systems [31, 44].

Mean-payoff objectives.One of the most classical example of quan-
titative objectives is the mean-payoff objective [29, 31, 33, 43],
where a reward is associated to each state and the payoff of a path is
the long-run average of the rewards of the path (computed as either
lim inf or lim sup of the averages of the finite prefixes to ensure



the payoff value always exists). While traditionally the verification
and the synthesis problems were considered with Boolean objec-
tives [40, 42, 45], recently quantitative objectives have received a
lot of attention [6, 7, 11], as they specify requirements on resource
consumption (such as for embedded systems or power-limitedsys-
tems) as well as performance-related properties.

Various semantics for multiple quantitative objectives.The two
classical semantics for quantitative objectives are as follows [8]: the
first is the expectation semantics, which is a probabilisticaverage of
the quantitative objective over the executions of the system; and the
second is the satisfaction semantics, which consider the probability
of the set of executions where the quantitative objective isat least
a required threshold valueν. The expectation objective is relevant
in situations where we are interested in the “average” behaviour of
many instances of a given system, while the satisfaction objective is
useful for analyzing and optimizing the desired executions, and is
more relevant for the design of critical stochastic reactive systems
(see [8] for a more detailed discussion). For example, consider one
mean-payoff objective that specifies the set of executions where
the average power consumption is at most 5 units, and another
mean-payoff objective that specifies the set of executions where
the average latency is at most 10 units. A multiple objectiveasks
to satisfyboth, i.e., their conjunction. We refer to such objectives
(i.e., conjunction of multiple mean-payoff objectives) asgeneral-
ized mean-payoff objectives1. The goal of playerMax is to maxi-
mize the probability of satisfaction of the generalized mean-payoff
objective while playerMin tries to minimize this probability, i.e.,
the game is zero-sum. Concrete applications of 21

2-player graph
games with generalized mean-payoff objectives have been consid-
ered, such as best-effort synthesis where the goal is to minimize
the violation of several incompatible specifications [12],real-time
scheduling algorithms with requirements on the utility andenergy
consumption [21], and electric power distribution in an avionics ap-
plication [4]. In particular, for the real-world avionics application
in [4], both two adversarial players, stochastic transitions, as well
as multiple mean-payoff objectives are required, i.e., theapplica-
tion can be modeled as 21

2-player graph games with generalized
mean-payoff objectives, but not in a strict subclass.

Computational questions.In this work, we consider 212-player
graph games with generalized mean-payoff objectives in thesatis-
faction semantics. A strategy for a player is a recipe that given the
history of interaction so far (i.e., the sequence of states)prescribes
the next move. The basic decision problem asks, given a 21

2-player
graph game, a generalized mean-payoff objective, and a probabil-
ity thresholdα, whether there exists a strategy for playerMax to
ensure the objective be satisfied with probability at leastα against
all strategies of playerMin. Since strategies in games correspond to
implementations of controllers for reactive systems, a particularly
relevant question is to ask for the existence of a finite-memory strat-
egy in the basic decision problem, instead of an arbitrary strategy.
Moreover, an important special case of the basic decision problem
is the almost-sure problem, where the probability threshold α is
equal to1.

Previous results.We summarize the main previous results for
MDPs, 2-player graph games, and 21

2-player graph games, with
generalized mean-payoff objectives.
1. MDPs. The basic decision problem for generalized mean-

payoff objectives in MDPs with infinite-memory strategies can
be solved in polynomial time [8]. The problem under finite-
memory strategies has not been addressed yet.

1 In the verification literature, conjunction of reachability, Büchi, and parity
objectives, are referred to as generalized reachability, generalized Büchi,
and generalized parity objectives, respectively, and generalized mean-
payoff objectives naming is for consistency.

2. 2-player games.The following results are known [47]: the basic
decision problem for generalized mean-payoff objectives in 2-
player graph games, both under finite-memory and infinite-
memory strategies, is coNP-complete; moreover, for infinite-
memory strategies if the mean-payoff objective is defined as
the limit supremum of the averages (rather than limit infimum
of the average), then the problem is in NP∩ coNP.

3. 21
2-player games.The almost-sure problem for generalized

mean-payoff objectives in 212-player graph games under finite-
memory strategies was considered in [4], and a semi-algorithm
(or semi-decision procedure) was presented for approximations
of the problem.

4. Memory of strategies. Infinite-memory strategies are strictly
more powerful than finite-memory strategies, even in 1-player
graph games thus also in MDPs and 2-player graph games: there
are games where an infinite-memory strategy can ensure the
objective with probability 1 while all finite-memory strategies
fail to do so2 [47].

Our contributions.The previous results suggest that 21
2-player

graph games with generalized mean-payoff objectives are consider-
ably more complicated than 2-player graph games as well as MDPs,
as even the decidability of the almost-sure problem was openfor
21

2-player graph games for finite-memory strategies (the previous
result neither gives an exact algorithm, nor establishes decidability
for approximation). In this work we present a complete picture of
decidability as well as computational complexity. Our results are as
follows:
1. MDPs. First we study the generalized mean-payoff prob-

lem under finite-memory strategies in MDPs. We present a
polynomial-time algorithm, and show that with randomization,
memoryless strategies (which do not depend on histories but
only on the current state) are sufficient, i.e., for finite-memory
optimal strategies no memory is required.

2. 21
2-player games.For 21

2-player graph games with generalized
mean-payoff objectives we show that: (1) the basic decision
problem is coNP-complete under finite-memory strategies (sig-
nificantly improving the known semi-decidability result for ap-
proximation of the almost-sure problem [4]), and moreover,the
same complexity holds for the almost-sure problem; and (2) un-
der infinite-memory strategies, the computational complexity
results coincide with the special case of 2-player graph games.

3. Memory of strategies.Under finite-memory strategies, in con-
trast to MDPs where we show with randomization no memory
is required, we establish an exponential lower bound (even with
randomization) for memory required in 21

2-player graph games
with generalized mean-payoff objectives. We also present a
matching upper bound showing that exponential memory is suf-
ficient.

Key technical insights.We show that for generalized mean-payoff
objectives, for the adversary, pure and memoryless strategies are
sufficient. Under finite-memory strategies for playerMax, this re-
sult is established using the following ideas:
• In general for prefix-independent objectives (objectives that do

not change if finite prefixes are added or removed from a path),
we show that sub-game perfect strategies exist, where a strat-
egy is sub-game perfect if it is optimal after every finite his-
tory. Such a result is known for infinite-memory strategies us-
ing results from martingale theory [35]. Our proof for finite-
memory strategies is conceptually simpler, and uses combina-

2 However, in some variants of the decision problem (such as requiring the
mean-payoff value, computed as thelim inf of the averages of the finite
prefixes, be strictly greater than a thresholdν) finite-memory strategies are
as powerful as infinite-memory strategies [25].



torial arguments and well-known discrete properties of MDPs
(see Lemma 2, Section 3).

• Then using the above result we show that for a sub-class of
prefix-independent objectives (that subsume generalized mean-
payoff objectives) for the adversary pure memoryless strategies
suffice (see Theorem 1, Section 3). Moreover, for this class of
objectives we establish determinacy when each player is re-
stricted to finite-memory strategies, which is of independent in-
terest (see also Theorem 1); and also show that such determi-
nacy result does not hold for all prefix-independent objectives
(see Remark 3).

• For MDPs, we generalize a result of [39] from graphs to
MDPs, to obtain a linear-programming solution for the gener-
alized mean-payoff objectives under finite-memory strategies
(see Theorem 3, Section 4).

Combining these results we obtain the coNP upper bound for the
basic decision problem for 212-player graph games and the coNP
lower bound follows from existing results on 2-player graphgames
(see Theorem 5, Section 4). Detailed proofs are available in[16].

Related works.We have described the most relevant related works
in the paragraphPrevious results.We discuss other relevant related
works. Markov decision processes with multiple objectiveshave
been studied in numerous works, for various quantitative objec-
tives, such as mean-payoff [8, 13], discounted sum [18, 20],total
reward [32] as well as qualitative objectives [30], and their combi-
nations [2, 3, 23, 25]. The problem of 2-player graph games with
multiple quantitative objectives has also been widely studied both
for finite-memory strategies [9, 22, 37, 46, 47] as well as infinite-
memory strategies [17, 47]. In contrast, for 21

2-player games with
multiple quantitative objectives only few results are known [4, 24],
because of the inherent difficulty to handle two-players, probabilis-
tic transitions, as well as multiple objectives all at the same time.
A semi-decision procedure for approximation of the almost-sure
problem for 21

2-player games with generalized mean-payoff objec-
tives was presented in [4], which we significantly improve. The
class of 212-player graph games with positive Boolean combina-
tions of total-reward objectives was considered in [24], and the
problem was established to be PSPACE-hard and undecidable for
pure strategies.

2. Definitions
Probability distributions. For a finite setS, we denote by∆(S)
the set of all probability distributions overS, i.e., the set of func-
tionsp : S → [0, 1] such that

∑

s∈S p(s) = 1. Thesupportof p
is the setSupp(p) = {s ∈ S | p(s) > 0}. For a setU ⊆ S let
p(U) =

∑

s∈U p(s).

Perfect-information stochastic games.A perfect-information
stochastic game(for brevity, stochastic games in the sequel) is
a tuple G = 〈S, (SMax, SMin), A, δ〉, consisting of a finite set
S = SMax ⊎ SMin of states partitioned into the setSMax of states
controlled by playerMax (depicted as round states in figures) and
the setSMin of states controlled by playerMin (depicted as square
states in figures), a finite setA of actions, and a probabilistic tran-
sition functionδ : S × A → ∆(S). If δ(s, a)(s′) > 0, we say
thats′ is ana-successorof s. A transitionδ(s, a) is deterministic
if δ(s, a)(s′) = 1 for some states′. The underlying graph ofG is
(S,E) whereE = {(s, s′) | δ(s, a)(s′) > 0 for somea ∈ A}.

For complexity results, we consider that the probabilitiesin
stochastic games are rational numbers with numerator and denom-
inator encoded in binary.

Markov decision processes and end-components.A Markov de-
cision process(MDP) is the special case of a stochastic game where
eitherSMax = ∅, or SMin = ∅. Given a states ∈ S and a set
U ⊆ S, let AU (s) be the set of all actionsa ∈ A such that

Supp(δ(s, a)) ⊆ U . A closedset in an MDP is a setU ⊆ S
such thatAU (s) 6= ∅ for all s ∈ U . A setU ⊆ S is an end-
component[27] if (i) U is closed, and (ii) the graph(U,EU ) is
strongly connected whereEU = {(s, t) ∈ U × U | δ(s, a)(t) >
0 for somea ∈ AU (s)} denote the set of edges given the actions.
We denote byE(M) the set of all end-components of an MDPM .
Markov chains and recurrent sets.A Markov chainis the special
case of an MDP where the action setA is a singleton. In Markov
chains, end-components are calledclosed recurrent sets.

Plays and strategies.A play is an infinite sequences0s1 . . . ∈ Sω

of states. Arandomized strategyfor Max is a recipe to describe
what is the next action to play after a prefix of a play ending
in a state controlled by playerMax; formally, it is a function
σ : S∗SMax → ∆(A) that provides probability distributions over
the action set. Apure strategyis a functionσ : S∗SMax → A that
provides a single action, which can be seen as a special case of
randomized strategy where for every play prefixρ ∈ S∗SMax there
exists an actiona ∈ A such thatσ(ρ)(a) = 1.

We consider the following memory restrictions on strategies. A
strategyσ ismemorylessif it is independent of the past and depends
only on the current state, that isσ(ρ) = σ(Last(ρ)) for all play
prefixesρ ∈ S∗SMax, whereLast(s0 . . . sk) = sk. In the sequel,
we call memoryless strategies the pure memoryless strategies, and
we emphasize that strategiesσ : SMax → ∆(A) are not necessarily
pure by calling them randomized memoryless.

A strategyσ usesfinite memoryif it can be described by a
transducer〈M,m0, σu, σn〉 consisting of a finite setM (the mem-
ory set), an initial memory valuem0 ∈ M , an update function
σu : M × S → M for the memory, and a next-action function
σn : M → ∆(A); the transducer〈M,m0, σu, σn〉 defines the
strategyσ such thatσ(ρ) = σn(σ̂u(m0, ρ)) for all play prefixes
ρ ∈ S∗SMax whereσ̂u extendsσu to sequences of states as usual
(i.e., σ̂u(m, ρ · s) = σu(σ̂u(m, ρ), s)). Given a finite-memory
strategyσ for playerMax, let Gσ = 〈S′, (∅, S′

Min), A, δ′〉 be the
MDP obtained by playingσ in G, whereS′ = S′

Min = S × M
and the transition functionδ′ is defined for all〈s,m〉 ∈ S′ and
action a ∈ A of playerMin as follows, for alls′ ∈ S, where
m′ = σu(m, s):

• if s ∈ SMax, thenδ′(〈s,m〉, a)(〈s′,m′〉) =
∑

b∈A σn(m
′)(b) ·

δ(s, b)(s′);

• if s ∈ SMin, thenδ′(〈s,m〉, a)(〈s′,m′〉) = δ(s, a)(s′).

Strategiesπ for playerMin are defined analogously, as well
as the memory restrictions. A strategy that is not finite-memory
is referred to as an infinite-memory strategy. We denote byΣ
the set of all strategies for playerMax, and byΣPM , andΣFM

respectively the set of all pure memoryless, and all finite-memory
strategies for playerMax. We use analogous notationΠ,ΠPM , and
ΠFM for playerMin.

Objectives. An objectiveis a Borel-measurable set of plays [5].
In this work we consider conjunctions of mean-payoff objectives.
Some of our results are related to more general classes of prefix-
independent and shuffle-closed objectives. We define the relevant
objectives below:
1. Prefix-independent objectives.An objectiveΩ ⊆ Sω is prefix-

independentif for all plays ρ ∈ Sω, and all statess ∈ S, we
haveρ ∈ Ω if and only if s · ρ ∈ Ω, that is the objective is
independent of the finite prefixes (of arbitrary length) of the
plays.

2. Shuffle-closed objectives.A shuffleof two plays ρ1, ρ2 is a
play ρ = u1u2u3 . . . such thatui ∈ S∗ for all i ≥ 1, and
ρ1 = u1u3u5 . . . andρ2 = u2u4u6 . . . . An objectiveΩ ∈ Sω

is closed under shuffling, if all shuffles of all playsρ1, ρ2 ∈ Ω
belong toΩ.



3. Multi-mean-payoff objectives.Let rwd : S → Qk be areward
function3 that assigns ak-dimensional vector of weights to
each state. For1 ≤ j ≤ k, we denote byrwdj : S → Q

the projection of the functionrwd on thej-th dimension. The
conjunction ofmean-payoff-infobjectives (which we refer as
generalized mean-payoff objectives) is the set

MeanInf =

{

s0s1 · · · ∈ S
ω |

k
∧

j=1

lim inf
n→∞

1

n
·

n−1
∑

i=0

rwdj(si) ≥ 0

}

that contains all plays for which the long-run average of weights
(computed aslim inf) is non-negative4 in all dimensions. The
objectives inside the above conjunction (indexed byj) are
called one-dimensional mean-payoff-inf objectives (in dimen-
sion j), and denotedMeanInfj . The conjunction ofmean-
payoff-supobjectives is the setMeanSup defined analogously,
replacinglim inf by lim sup in the definition ofMeanInf.

Remark 1. It is easy to show that mean-payoff-inf objectives are
closed under shuffling, and that the conjunction of objectives that
are closed under shuffling is closed under shuffling [38]. However,
the conjunctions of mean-payoff-sup objectives are in general not
closed under shuffling [47, Example 1].

Probability measures.Given an initial states, and a pair of strate-
gies(σ, π) for Max andMin, a finite prefixρ = s0 · · · sn of a play
is compatiblewith σ andπ if s0 = s and for all0 ≤ i ≤ n − 1,
there exists an actionai ∈ A such thatδ(si, ai)(si+1) > 0, and
either si ∈ SMax and σ(s0 · · · si)(ai) > 0, or si ∈ SMin and
π(s0 · · · si)(ai) > 0. A probability can be assigned in a stan-
dard way to every finite play prefixρ, and by Caratheodary’s ex-
tension theorem a probability measurePσ,π

s (·) of objectives can be
uniquely defined. For MDPs, we omit the strategy of the player
with empty set of states, and for instance ifSMin = ∅ we denote
by Pσ

s (·) the probability measure under strategyσ of playerMax.
Value and almost-sure winning.The optimalvaluefrom an initial
states of a game with objectiveΩ is defined by

〈〈Max〉〉val(Ω, s) = sup
σ∈Σ

inf
π∈Π

P
σ,π
s (Ω).

By Martin’s determinacy result [41], the optimal value is also
〈〈Min〉〉val(Ω, s) = infπ∈Π supσ∈Σ Pσ,π

s (Ω), the infimum proba-
bility of satisfyingΩ that playerMin can ensure against all strate-
gies of playerMax. In other words the determinacy shows that
〈〈Max〉〉val (Ω, s) = 〈〈Min〉〉val(Ω, s), and the order of sup and inf
in the quantification of the strategies can be exchanged.

A strategy σ for player Max is optimal from a states if
for all strategiesπ for player Min it ensures thatPσ,π

s (Ω) ≥
〈〈Max〉〉val (Ω, s). The value (or winning probability) of a strategyσ
in states is 〈〈σ〉〉val(Ω, s) = infπ∈Π Pσ,π

s (Ω). We omit analogous
definitions for playerMin.

We say that playerMax wins almost-surely from an initial
states if there exists a strategyσ for Max such that for every
strategyπ of playerMin we havePσ,π

s (Ω) = 1. The states and
the strategyσ are calledalmost-surewinning for playerMax.
Finite-memory values and almost-sure winning.The optimal
finite-memory value(for playerMax) is defined analogously, when
the players are restricted to finite-memory strategies:

〈〈Max〉〉FM
val (Ω, s) = sup

σ∈ΣFM

inf
π∈ΠFM

P
σ,π
s (Ω).

3 We use rational rewards to be able to state complexity results. All other
results in this paper hold if the rewards are real numbers.
4 Note that it is not restrictive to define mean-payoff objectives with a
threshold0 since we can obtain mean-payoff objectives defined as the long-
run average of weights above any thresholdν by subtracting the constantν
to the reward function.

A strategyσ is optimal for finite memoryfrom a states if
it uses finite memory and for all finite-memory strategiesπ
for player Min it ensures thatPσ,π

s (Ω) ≥ 〈〈Max〉〉FM
val (Ω, s).

We define analogously almost-sure winning with finite-memory
strategies, and the finite-memory value〈〈σ〉〉FM

val (Ω, s) of σ
in state s (against finite-memory strategies of playerMin).
We define the finite-memory value for playerMin by
〈〈Min〉〉FM

val (Ω, s) = infπ∈ΠFM supσ∈ΣFM Pσ,π
s (Ω) and

the finite-memory value of strategyπ for player Min by
〈〈π〉〉FM

val (Ω, s) = supσ∈ΣFM Pσ,π
s (Ω). We show in Theorem 1

for a large class of objectives (namely, prefix-independentshuffle-
closed objectives) that the finite-memory value for playerMax
and for playerMin coincide, and allowing arbitrary strategies for
playerMin (against finite-memory strategies for playerMax) does
not change the finite-memory value.

Subgame-perfect strategies.Given a strategyσ for Max, and a
finite prefixρ = s0 · · · sk of a play, we denote byσρ the strategy
that plays from the initial statesk whatσ would play after the prefix
ρ, i.e. such thatσρ(sk · ρ′) = σ(ρ · ρ′) for all play prefixesρ′, and
σρ(s · ρ

′) is arbitrarily defined for alls 6= sk.
A strategyσ for Max is subgame-perfectif for all nonempty

play prefixesρ ∈ S+, the strategyσρ is optimal from the initial
stateLast(ρ). Analogously, the strategyσ is subgame-perfect-for-
finite-memoryif all strategiesσρ are optimal-for-finite-memory
strategies fromLast(ρ).

Value problems. Given an objectiveΩ, a thresholdλ ∈ Q, and
an initial states, the value-strategy problemasks whether there
exists a strategyσ for playerMax such that〈〈σ〉〉val(Ω, s) ≥ λ
(or whether there exists a finite-memory strategyσ for playerMax
such that〈〈σ〉〉FM

val (Ω, s) ≥ λ). The value problemasks whether
〈〈Max〉〉val(Ω, s) ≥ λ (resp., whether〈〈Max〉〉FM

val (Ω, s) ≥ λ).

End-component lemma. An important property of the end-
components in MDPs is that for all strategies (with finite mem-
ory or not) with probability 1 the set of states that are visited in-
finitely often along a play is an end-component [27, 28]. Given a
play ρ ∈ Sω, let Inf(ρ) be the set of states that occur infinitely
often inρ.

Lemma 1. [27, 28] Given an MDPM , for all statess ∈ S and all
strategiesσ ∈ Σ, we havePσ

s ({ρ | Inf(ρ) ∈ E(M)}) = 1.

Remark 2 (Key properties for MDPs). The end-component lemma
is useful in the analysis of MDPs with prefix-independent ob-
jectives, which can be decomposed into the analysis of the end-
components (which have useful connectedness properties),and a
reachability analysis to the end-components. Moreover, suppose
we consider prefix-independent objectives, and the MDP restricted
to an end-componentU . Then it follows from the results of [14]
that either all states ofU have value 1 or all states ofU have
value 0. Hence for prefix-independent objectives in MDPs, the
optimal value is the optimal reachability probability to the win-
ning end-components, where a winning end-component is an end-
component with value 1.

3. Half-Memoryless Result under Finite-Memory
Strategies

We show a general result that gives a sufficient condition forex-
istence of memoryless strategies (for one of the players) ingames
played with finite-memory strategies.

Comment on finite- vs. infinite-memory proof.The statement and
proof structure of the result are similar to [35, Theorem 5.2] that
established a sufficient condition for existence of memoryless op-
timal strategies in games played with arbitrary (infinite-memory)
strategies. However, the proof uses different techniques.The key
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Figure 1. Lemma 2: construction of a strategyσ′ with higher value
in subgames than the optimal-for-finite-memory strategyσ.

to establish the existence of memoryless strategies for oneof the
players is to first establish the existence of subgame-perfect strate-
gies for the other player. We establish such a result in Lemma2
for finite-memory strategies. Without the restriction of finite mem-
ory, only the existence ofε-subgame-perfect strategies is known,
and the proof requires intricate arguments and involved mathemat-
ical machinery such as Doob’s convergence theorem for martin-
gales [35, Theorem 4.1]. Our proof is combinatorial and usesbasic
results on MDPs (e.g., discrete properties of end-components).

Key ideas of the proof.The proof of Lemma 2 consists in construct-
ing from a finite-memory strategyσ a strategy that is subgame-
perfect-for-finite-memory by successively “improving” the value of
the strategyσρ for each finite prefixρ. Improvements are obtained
by modifying some transitions in the transducer definingσ, from
the state reached after following the finite prefixρ. The modifica-
tion of transitions does not change the memory space of the strat-
egy, and since we consider finite-memory strategies, although there
may be infinitely many finite prefixesρ where the strategy needs to
be “improved”, there is only a finite number of memory states to
consider for improvement, which guarantees the improvement pro-
cess to terminate and yields a subgame-perfect-for-finite-memory
strategy.

Lemma 2. In every stochastic game with a prefix-independent ob-
jective, there exists a subgame-perfect-for-finite-memory strategy
for playerMax.

Proof. Our proof is established using the following key steps:
1. Existence of an optimal-for-finite-memory strategy for player

Max.
2. Modification of the strategy for improvement of values after

finite prefixes.
3. The proof that the modification provides an improvement in

two parts: once the strategy for playerMax is fixed, we have
an MDP. In the MDP, we first show properties of the end-
components, and second we provide bounds on the optimal
reachability probability to the end-components to establish the
improvement.

Optimal-for-finite-memory strategy.We show the existence of a
finite-memory strategyσ for playerMax in the gameG such that
σ is optimal-for-finite-memory from every state for the prefix-
independent objectiveΩ. The fact that such a strategy always exists
is as follows: it follows from [34, Theorem 4.3] that it suffices to
prove the result for almost-sure winning strategies. Consider the set
Z of states with value 1 for finite-memory strategies. We need to
show that there exists a finite-memory almost-sure winning strategy
in Z. Let 0 < ε < 1, and consider a finite-memory strategy that
ensures value at least1 − ε from all states inZ. If a strategy

can ensure positive winning from every state of a game, then it
is almost-sure winning by the result of [14]. The existence of an
optimal-for-finite-memory strategy follows.
Notation.Consider an optimal-for-finite-memory strategyσ. Thus
for all statess of the gameG there exists a memory value
ms in the transducer ofσ such that the value of the objec-
tive Ω in the MDPGσ is the optimal finite-memory value, that is
〈〈MinGσ

〉〉FM
val (Ω, 〈s,ms〉) = 〈〈MaxG〉〉

FM
val (Ω, s) where the sub-

script inMinGσ
indicates that the value is computed in the MDP

Gσ (which is a MDP for playerMin) whileMaxG gives the optimal
value for playerMax in the gameG.
Modification of the strategy.If the strategyσ is subgame-perfect-
for-finite-memory, then the proof is done. Otherwise, thereex-
ists a state〈s,m′〉 in Gσ with value below the optimal finite-
memory value ofs, namely such that〈〈MinGσ

〉〉FM
val (Ω, 〈s,ms〉) >

〈〈MinGσ
〉〉FM
val (Ω, 〈s,m′〉). We construct animprovedstrategyσ′

as follows: the strategyσ′ plays likeσ except that when the state
〈s,m′〉 is reached, the strategyσ′ plays likeσ is playing from state
〈s,ms〉 (equivalently, we remove the outgoing transitions from
state〈s,m′〉 in Gσ, and replace them by a deterministic transition
to state〈s,ms〉 on all actions to obtainGσ′ , as illustrated in Fig-
ure 1). Note that the new strategyσ′ has the same memory set as
σ. We show below that the value of every state inGσ′ is at least
as large as the value of the same state inGσ (⋆). It follows that
the value of state〈s,m′〉 in Gσ′ is the optimal finite-memory value
from s, and by repeating the same construction in every state where
the value is below the optimal finite-memory value, we obtain(in
finitely many steps) a subgame-perfect-for-finite-memory strategy
for playerMax.
Proof of(⋆). We proceed with the proof of(⋆), which has two steps
as mentioned above. We first define the notion of value class.
Value class and properties.In the MDP Gσ, a value classis a
maximal subset of states that have the same value (defined as the
infimum over the strategies of playerMin). The following property
holds inGσ , for every statel = 〈·, ·〉, and actiona ∈ A: consider
the value class ofl, if there is ana-successor ofl in a lower
value class, then there is also ana-successor ofl in a higher
value class (Figure 2). If we consider the partition defined by the
value classes inGσ, this property also holds in the modified MDP
Gσ′ corresponding to strategyσ′, because the new deterministic
transition (dashed edge of Figure 1) goes to a higher value class.
Properties of end-components.Now, we claim that in the modified
MDP Gσ′ every end-component is included in some value class
(of the original MDPGσ). We show this by contradiction (see also
Figure 2). Assume that there is an end-componentC in Gσ′ with
non-empty intersection with different value classes (of the original
MDP Gσ). Let x ∈ C be a state ofC with largest value. Since
C is strongly connected, there is a path fromx to a lower value
class, and on this path there is a statey ∈ C with largest value that
has ana-successorz with lower value (for somea ∈ AC(y)). It
follows thaty has also ana-successor with higher value, according
to the above property. This successor is outsideC since there is
no larger value class inC than the value class ofy. This is in
contradiction with the fact that end-components are closedsets (and
thata ∈ AC(y)). We conclude that inGσ′ every end-component is
included in some value class (of the original MDPGσ). Therefore,
the value of each end-component inGσ′ is at least as large as the
value of the value class containing it (inGσ). It also follows that the
new deterministic transitions from〈s,m′〉 to 〈s,ms〉 do not belong
to any end-component inGσ′ .
Optimal reachability probability.The key steps to obtain the bound
on optimal reachability probability is as follows: we observe that
the optimal reachability probability in MDPs is characterized by
a minimizing linear-programming solution, and we show thatthe
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Figure 2. Lemma 2: value-class analysis. No end-componentC
can lie across several value classes.

solution before the modification is a feasible solution after the
modification. We now present the details.

Optimal value via optimal reachability.We show that the value
of the state〈s,m′〉 in Gσ′ is strictly greater than the value of
〈s,m〉 in Gσ (for playerMax). LetSlosing be the union of all end-
components inGσ with value0 for the prefix-independent objec-
tive Ω (thus losing for playerMax, and winning for playerMin).
By Remark 2, the optimal value for playerMin in the MDP is the
optimal reachability probability toSlosing.

Optimal reachability probability toSlosing. Consider the following
linear program inGσ = 〈S′, (∅, S′

Min), A, δ′〉 that computes the
value (for playerMin) of each statel ∈ S′ of Gσ in variablexl, by
solving a reachability problem to the states inSlosing:

minimize
∑

l∈S′ xl

xl ≥
∑

k∈S′ δ
′(l, a)(k) · xk for all l ∈ S′, a ∈ A

xl = 1 for all l ∈ Slosing

The correctness of the linear program to compute optimal reach-
ability probability is standard [31]. Letx∗ be an optimal solu-
tion of this linear program. Note that the values are computed for
playerMin, and thusx∗

l = 1 − 〈〈Max〉〉FM
val (Ω, l). It follows that

x∗
〈s,ms〉

< x∗
〈s,m′〉.

Feasible solution.Consider the modified MDPGσ′ (with same
state space asGσ), in which the union of end-components
with value 0 is contained inSlosing. Therefore, considering the
same linear program forGσ′ provides an upper bound on the
new value (for playerMin). For eachl ∈ S′, define yl =
{

x∗
l if l 6= 〈s,m′〉

x∗
〈s,ms〉

if l = 〈s,m′〉

Then(yl)l∈S′ is a feasible solution to the linear program forGσ′ ,
and for the optimal solutiony∗, we havey∗

l ≤ yl ≤ x∗
l (and for

l′ = 〈s,m′〉 we havey∗
l′ ≤ yl′ < x∗

l′ ). Sincey∗
l′ is only an upper

bound of the new value ofs for playerMin in Gσ′ , it shows that the
value improved for playerMax in every state. Since the value of
〈s,ms〉 in Gσ was the optimal finite-memory value, it follows that
in Gσ′ the value of〈s,ms〉 is also the optimal finite-memory value.
Since all transitions of〈s,m′〉 lead to〈s,ms〉, the value of〈s,m′〉
in Gσ′ is the optimal finite-memory value froms, which concludes
the proof of(⋆).

The result of [35, Theorem 5.2] shows that in games where the
players are allowed to use arbitrary strategies (thus not restricted to
finite-memory strategies), memoryless optimal strategiesexist for
playerMin if the objective of playerMax is prefix-independent and
closed under shuffling. The proof of this result uses an analogue
of Lemma 2 for arbitrary strategies, and relies on edge induction,

a technique that became standard [15, 35, 36, 38]. The shape of
the argument is not specific to games with arbitrary strategies: in
games where the players are restricted to finite-memory strategies,
we can follow the same line of proof (using Lemma 2) to show that
if the objective of a player is prefix-independent and closedunder
shuffling, then memoryless optimal strategies exist for theother
player.

Theorem 1. In stochastic games, if the objectiveΩ of playerMax
is prefix-independent and closed under shuffling, and playerMax is
restricted to finite-memory strategies, then playerMin has a mem-
oryless optimal-for-finite-memory strategy (as well as a memory-
less optimal strategy), and determinacy holds under finite-memory
strategies. More precisely, for all statess we have:

〈〈Max〉〉FM
val (Ω, s) = 〈〈Min〉〉FM

val (Ω, s) =: v(s),and

sup
σ∈ΣFM

inf
π∈Π

P
σ,π
s (Ω, s) = v(s) = inf

π∈ΠPM

sup
σ∈ΣFM

P
σ,π
s (Ω, s).

Significance of Theorem 1.We first remark on the significance
of the result, and then present the main steps of the proof.
First, the result establishes determinacy for finite-memory strate-
gies i.e.,〈〈Max〉〉FM

val (Ω, s) = 〈〈Min〉〉FM
val (Ω, s) = v(s), which

implies that even for finite-memory strategies the order of sup
and inf can be exchanged. However, note that the finite-memory
value is different from the value under infinite-memory strate-
gies, and the determinacy for finite-memory does not follow
from the determinacy for infinite-memory strategies. Second,
supσ∈ΣFM infπ∈Π Pσ,π

s (Ω, s) = v(s) implies that as long as
player Max is restricted to finite-memory strategies, whether
playerMin uses finite-memory or infinite-memory strategies does
not matter. Finally,v(s) = infπ∈ΠPM supσ∈ΣFM Pσ,π

s (Ω, s) im-
plies that against finite-memory strategies of playerMax there ex-
ists a pure memoryless strategy for playerMin that is optimal (even
considering all infinite-memory strategies for playerMin).

Main steps of the proof.We present the key steps of the proof of
Theorem 1, and we show that the argument in the proof of [35,
Theorem 5.2] (which we refer to for the precise technical steps)
can be adapted for finite-memory strategies. The key steps are:
(i) induction on the number of player-Min states; (ii) creating dif-
ferent games for different choices at a player-Min state, in which
playerMin has memoryless optimal strategies by induction hypoth-
esis; and (iii) showing the value of the original game is at least
the minimum of the value of the different games, thus memoryless
strategies suffice.

Induction on player-Min states.The proof is by induction on the
number of states of playerMin. The base case|SMin| = 0 corre-
sponds to games with only states of playerMax. The result holds
trivially in that case (the empty strategy of playerMin is memo-
ryless). For the induction step, assume that the result holds for all
games with|SMin| < k, and consider a gameG with |SMin| = k.

Different games for different choices.We explain the rest of the
proof assuming the action set contains only two actions, that is
A = {a, b}. The proof is the same for an arbitrary finite set of
actions, with more complication in the notation. InG, consider a
stateŝ ∈ SMin of playerMin and construct two gamesGa and
Gb obtained fromG by removingŝ and by replacing the incoming
transitions tôs by transitions to itsa-successors andb-successors
respectively. The transition function ofGx (for x ∈ {a, b}) is
defined byδx(s, c)(s′) = δ(s, c)(s′) + δ(s, c)(ŝ) · δ(ŝ, x)(s′) for
all s, s′ ∈ S \ {ŝ}, and all actionsc ∈ A.

Value of original game at least the minimum of the value of the
two games.In Ga andGb the number of states of playerMin is
k − 1. Hence by the induction hypothesis there exist memoryless
strategiesπGa andπGb for playerMin that are optimal-for-finite-
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Figure 3. A game with prefix-independent objectiveBüchi(s2) ∧
(coBüchi(s2) ∨ MeanSup) that is not determined under finite-
memory strategies.

memory (as well as optimal among the infinite-memory strategies)
in Ga andGb respectively. The proof proceeds by showing that in
the gameG, playerMin cannot obtain a lower (i.e., better) value
than in one of the gamesGa or Gb, that is for all strategiesπ of
playerMin, for all statess 6= ŝ we have5:

〈〈πG〉〉FM
val (Ω, s)≥min

{

〈〈πGa〉〉FM
val (Ω, s), 〈〈πGb〉〉FM

val (Ω, s)
}

.
(1)

To show this, we consider subgame-perfect-for-finite-memory
strategiesσa andσb for playerMax in gamesGa andGb respec-
tively (which exist by Lemma 2), and we construct a finite-memory
strategyσ in G that achieves, against all strategiesπ, a value at least
as large as eitherσa in Ga or σb in Gb. Intuitively, σ switches be-
tweenσa andσb, playing according toσa when in the last visit
to ŝ playerMin played actiona (thus as inGa), and playing ac-
cording toσb when in the last visit tôs playerMin played action
b (thus as inGb). To formally defineσ, given a play prefix inG we
use projections onto plays inGa (resp.,Gb) that erase all sub-plays
between successive visits tôs where actionb (resp., actiona) was
played inŝ. Note thatσ uses finite memory. The plays compatible
with σ andπ are shuffles of plays compatible withσa in Ga and
plays compatible withσb in Gb, and since the objectiveΩ is closed
under shuffling, the probability measure of the plays satisfying the
objective inG is no lower than the value of either gamesGa or Gb:

P
σ,π
s (Ω) ≥ min

{

〈〈πGa〉〉FM
val (Ω, s), 〈〈πGb〉〉FM

val (Ω, s)
}

.

It follows that (1) holds, and thus the optimal-for-finite-memory
(as well as optimal among infinite-memory strategies) strategies
in the gamesGa and Gb (extended to playa and b respectively
in ŝ) are sufficient for playerMin in G. Therefore by the induc-
tion hypothesis, memoryless strategies are sufficient for playerMin
to achieve the optimal finite-memory value, letπ be such a strat-
egy. By the same argument and using the induction hypothesis,
for the finite-memory strategyσ for player Max in G we have
〈〈σ〉〉val(Ω, s) = 〈〈σ〉〉FM

val (Ω, s) = 〈〈π〉〉FM
val (Ω, s), which gives

〈〈Max〉〉FM
val (Ω, s) = 〈〈Min〉〉FM

val (Ω, s). Note that our proof han-
dled that the strategies for playerMin are allowed to be infinite-
memory, and the result still holds.

Remark 3. The determinacy result of Theorem 1, which allows
to switch thesup and inf operators ranging over finite-memory
strategies, is true for prefix-independent shuffle-closed objectives.
We present an example to show that such a result does not hold
for general prefix-independent objectives that are not closed un-
der shuffling. Consider the game of Figure 3, with the objective
Ω = Büchi(s2) ∧ (coBüchi(s2) ∨ MeanSup) whereBüchi(s2)
is the set of plays that visits2 infinitely often, andcoBüchi(s2)
is the set of plays that eventually stay ins2 forever. Note that the
game is even non-stochastic. We show that〈〈Max〉〉FM

val (Ω, s1) = 0
and 〈〈Min〉〉FM

val (Ω, s1) = 1. Intuitively, after either player fixed
a finite-memory strategy, the other player can win using slightly
more memory than the first player (but still finite memory). For
all finite-memory strategiesσ of playerMax, either (i) there ex-

5 We assume that the value〈〈πG〉〉FM
val

(Ω, s) of a strategyπG is computed
in the gameG in superscript.

ists a compatible play that eventually stays forever ins1, and
then the objectiveBüchi(s2) is violated, or(ii) s2 is visited in-
finitely often in all compatible plays and playerMin can ensure
with a finite-memory strategy that both objectivesMeanSup and
coBüchi(s2) are violated by staying ins2 one more time than
player Max stayed ins1, and then going back tos1. It follows
that 〈〈σ〉〉FM

val (Ω, s1) = 0. Analogously, against all finite-memory
strategiesπ of playerMin, playerMax can ensure that the objec-
tiveΩ is satisfied (by staying ins1 one more time than playerMin
stayed ins2, and then going tos2), thus 〈〈π〉〉FM

val (Ω, s1) = 1.
Hence〈〈Max〉〉FM

val (Ω, s1) 6= 〈〈Min〉〉FM
val (Ω, s1) and the game of

Figure 3 is not determined under finite-memory strategies.

Upper bound on memory.We now show that for prefix-independent
shuffle-closed objectives, the memory required for playerMax is
exponential as compared to the memory required for the same
objective in MDPs. If there arek states for playerMin, then the
optimal-for-finite-memory strategyσ constructed for playerMax
in the proof of Theorem 1 is as follows: it considers strategies in the
choice-fixed games (Ga andGb) with k − 1 states for playerMin,
and the strategy in the original game considers projectionsof plays
and then copies the strategies of the choice-fixed games. Thus
the memory required for playerMax in games withk states for
playerMin is the union of the memory required for the choice-fixed
games withk−1 states, and there are at most|A| such choice-fixed
games. If we denote byM(k) the memory required for playerMax
in games withk player-Min states, then the following recurrence is
satisfied:

M(k) = |A| ·M(k − 1).

Note thatM(0) represents the memory bound for MDPs, and thus
we get a bound onM(k) = |A|k · M(0) in games that is greater
than the memory bound for MDPs by an exponential factor.

Theorem 2. In stochastic games with a prefix-independent shuffle-
closed objectiveΩ, an upper bound on the memory required for
optimal-for-finite-memory strategies is|A||SMin| · M(0), where
M(0) is an upper bound on memory required for objectiveΩ in
MDPs.

4. Generalized Mean-Payoff Objectives under
Finite-Memory Strategies

In generalized-mean-payoff games, infinite-memory strategies
are more powerful than finite-memory strategies, even in 1-
player games with only deterministic transitions, i.e., graphs [47,
Lemma 7].6 It follows that in general 〈〈Max〉〉val(Ω, s) 6=
〈〈Max〉〉FM

val (Ω, s) in generalized-mean-payoff games (for both
Ω = MeanSup andΩ = MeanInf). In this section, we consider the
value problem for finite-memory strategies, and present complex-
ity results showing that the problem is in PTIME for MDPs, andis
coNP-complete for games. Finally we present optimal boundsfor
memory required in 212-player games.

4.1 Generalized mean-payoff objectives under finite-memory
in MDPs

We consider the value problem for finite-memory strategies in
MDPs with generalized mean-payoff objectives. First we show
that randomized memoryless strategies are as powerful as finite-
memory strategies, and then using this result we show that the value
problem can be solved in polynomial time.

Note that in finite-state Markov chains with a fixed reward
function, from all statess, the probability that the conjunction

6 In the example of [47, Lemma 7] all finite-memory strategies have win-
ning probability 0 while there exists an almost-sure winning strategy (with
infinite memory).
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Figure 4. Linear program for an MDP with two-dimensional mean-payoffobjective (the
constraintsfi ≥ 0 for i = 1, . . . , 5 are omitted in the figure).
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Figure 5. The (disjoint) union of two
end-components corresponds to a solution
of LP (f1 = f6 = 1

2
and f2 = f3 =

f4 = f5 = 0). However, no single end-
component is a solution.

MeanSup of mean-payoff-sup objectives holds froms is the same
as the probability that the conjunctionMeanInf of mean-payoff-
inf objectives holds froms [31]. It follows that in MDPs with
finite-memory strategies, the value for mean-payoff-sup and mean-
payoff-inf objectives coincides, thus〈〈Max〉〉FM

val (MeanSup, s) =
〈〈Max〉〉FM

val (MeanInf, s) for all statess.

Key ideas.Let M = 〈S,A, δ〉 be an MDP andrwd : S → Rk be
a reward function. The key ideas to show that randomized memo-
ryless strategies are sufficient for generalized mean-payoff objec-
tives are: (i) first observe that the mean-payoff value of a play de-
pends only on the frequency of occurrence of each state, (ii)un-
der finite-memory strategies the frequencies are well defined (with
probability 1) for each state and action, and (iii) given thefrequen-
cies of a finite-memory strategy, a randomized memoryless strategy
that plays at every state an action with probability proportional to
the given frequencies achieves the same frequencies as the finite-
memory strategy.

Thus randomized memoryless strategies can achieve the same
values as arbitrary finite-memory strategies. By Remark 2 the win-
ning probability from an initial state is the maximum probability
to reach end-components with value1, which is obtained by a pure
memoryless strategy. It follows that randomized memoryless strate-
gies are sufficient in MDPs with mean-payoff objectives to realize
the finite-memory value.

Lemma 3. In all MDPs with a generalized mean-payoff objective,
there exists an optimal-for-finite-memory strategy that israndom-
ized memoryless.

Polynomial-time algorithm We present a polynomial-time algo-
rithm to compute the value in generalized mean-payoff MDPs with
finite-memory strategies. The key steps of the algorithm are:
• The algorithm determines all end-components with value1 (the

winning end-components), and then computes the maximum
probability to reach the union of the winning end-components
(see Remark 2).

• The first step to obtain the winning end-components is to define
a linear program based on the frequencies that gives a union of
end-components with frequencies that satisfy the generalized
mean-payoff objective. However, this union of end-components
itself may not be connected, even though it is part of a larger
end-component. In the infinite-memory strategy case, the paths
between the union of end-components can be used with van-
ishing frequency to ensure the generalized mean-payoff objec-
tives. However, for finite-memory strategies connectedness of
the union of the end-components must be ensured. We show
how to combine the linear program with a graph-based algo-
rithm to ensure connectedness and get a polynomial-time algo-
rithm.

Frequency-based linear program.It is known that the winning
probability for reachability objectives can be computed inpolyno-

mial time using a reduction to linear programming [31]. To com-
plete the proof, we present a solution to compute the winningend-
components in polynomial time. Our approach extends a technique
for finding in a graph a cycle with sum of rewards equal to zero in
all dimensions [39]. First, we present a linear programLP to find
a union of end-components with nonnegative sum of rewards (the
end-components may be disjoint). The variablesfs,a represent the
frequency of playing actiona in states. The linear programLP
consists of the following constraints (see also Figure 4):

(E1) for eachs ∈ S:
∑

a∈A fs,a =
∑

t∈S

∑

a∈A ft,a · δ(t, a)(s)

(E2)
∑

s∈S

∑

a∈A fs,a · rwd(s) ≥ 0 (component-wise)

(E3)
∑

s∈S

∑

a∈A fs,a = 1

(E4) for eachs ∈ S anda ∈ A: fs,a ≥ 0

The equations (E1) above express that in every state, the incoming
frequency is equal to the outgoing frequency. Equation (E2)en-
sures that the mean-payoff value is nonnegative (in all dimensions).
Equations (E3) and (E4) require that the frequencies are nonnega-
tive and sum up to1.

Illustration. In the example of Figure 4, a solution to the linear pro-
gram gives for instancef1 = 1

16
andf3 = 7

16
, which corresponds

to a randomized memoryless strategy that chooses froms1 to go to
s2 with probability 1

1+7
= 1

8
and to go to{s3, s4} with probability

7

1+7
= 7

8
. This strategy satisfies the conjunction of mean-payoff

objectives with probability 1 (it ensures that the long-runaverage
of the rewards is1

32
≥ 0 in both dimensions).

Issues regarding connectedness.Arguments similar to the proof
of [39, Theorem 2.2] show that the linear programLP has a solu-
tion if and only if there exists a union of end-components inM and
associated frequencies with nonnegative sum of rewards. However,
this union of end-components need not to be connected and thus
may not be an end-component (see Figure 5 where the union of the
end-components{s1} and{s3} corresponds to a solution ofLP).
Note that connectedness is not an issue for infinite-memory strate-
gies: in the example of Figure 5 there exists an infinite-memory
strategy to ensure the mean-payoff objectives with probability 1
(see [47, Lemma 7]).

Ensuring connectedness and frequencies.To find single end-
components with nonnegative sum of rewards, we adapt a tech-
nique presented in [39, Section 3]. Construct a graphGM with set
S of vertices, and for each pair(s, a) ∈ S × A, if the linear pro-
gramLP ∧ fs,a > 0 has a solution, add edges(s, t) in GM for all
a-successorst of s. If the graphGM is strongly connected, then it
defines an end-component with nonnegative sum of rewards inM .
Otherwise, consider the maximum-scc decomposition ofGM , and
iterate the algorithm in each scc, until the state space reduces to one
element. The algorithm identifies in this way all (maximal) winning



end-components and arguments similar to [39, Theorem 3.3] show
that this algorithm runs in polynomial time, as the recursion depth
is bounded by the number of states, and the scc decompositionen-
sures that the graphs in each recursive call of a given depth are
disjoint.

Theorem 3. The following assertions hold for MDPs with gener-
alized mean-payoff objectivesΩ ∈ {MeanSup,MeanInf}:

1. There exists a randomized memoryless strategyσ such that
〈〈Max〉〉FM

val (Ω, s) = Pσ
s (Ω, s) for all statess (i.e., randomized

memoryless optimal strategies wrt. to finite-memory strategies).
2. The value and value-strategy problems for generalized mean-

payoff MDPs under finite-memory strategies (i.e., whether
〈〈Max〉〉FM

val (Ω, s) ≥ λ) can be solved in polynomial time.

Insufficiency of pure memoryless strategies.While we show that
randomized memoryless strategies are sufficient, the example of
Figure 4 shows that pure memoryless strategies are not sufficient to
achieve the optimal finite-memory value: froms1, a pure memory-
less strategy can either chooses2 and then the mean-payoff value
in the first dimension is− 3

2
< 0, or choose{s3, s4} and then the

mean-payoff value in the second dimension is− 1

2
< 0. Thus for all

pure memoryless strategies, the generalized mean-payoff objective
is violated with probability 1 although there exists an almost-sure
winning randomizedmemoryless strategy (see the paragraphIllus-
tration after Lemma 3).

4.2 Generalized mean-payoff objectives under finite-memory
in 2 1

2-player games

We present a result analogous to Theorem 1 for generalized mean-
payoff stochastic games showing that memoryless strategies are
sufficient for playerMin against finite-memory strategies. Note that
the result extends Theorem 1 as mean-payoff-sup objectivesare not
closed under shuffling (Remark 1).

Theorem 4. In stochastic games with objectiveΩ ∈
{MeanSup,MeanInf}, there exists an optimal-for-finite-memory
strategy for playerMax, there exists a memoryless optimal-for-
finite-memory strategy for playerMin, and determinacy holds un-
der finite-memory strategies, that is for all statess:

〈〈Max〉〉FM
val (Ω, s) = 〈〈Min〉〉FM

val (Ω, s) =: v(s),and

sup
σ∈ΣFM

inf
π∈Π

P
σ,π
s (Ω, s) = v(s) = inf

π∈ΠPM

sup
σ∈ΣFM

P
σ,π
s (Ω, s).

It follows that the value problem for generalized mean-payoff
games with finite-memory strategies can be solved in coNP by
guessing a memoryless strategy for playerMin and checking
whether the value of the resulting MDP under finite-memory strate-
gies for playerMax is above the given threshold, which can be done
in polynomial time (Theorem 3). By the result of [47, Lemma 5,
Lemma 6], the problem of deciding the existence of a finite-
memory almost-sure winning strategy for playerMax in a game
(even with only deterministic transitions) with a conjunction of
mean-payoff-sup or mean-payoff-inf objectives is coNP-hard. The-
orem 5 summarizes the results of this section.

Theorem 5. The value and value-strategy problems for stochastic
games with generalized mean-payoff-(inf or sup) objectives played
with finite-memory strategies for playerMax (and finite- or infinite-
memory strategies for playerMin) are coNP-complete.

4.3 Memory bounds for strategies in 212-player games

We present both exponential lower bound and upper bound on
memory of strategies. We show that in games where finite memory
is sufficient to win almost-surely a conjunction of mean-payoff

objectives, exponential memory is necessary in general, even with
randomized strategies [16].

Theorem 2 and Theorem 3 establish an|A||SMin| upper bound
on memory required for optimal-for-finite-memory strategies. Thus
we obtain the following result.

Theorem 6. The optimal bound for memory required for optimal-
for-finite-memory strategies for playerMax in generalized mean-
payoff stochastic games is exponential.

5. Generalized Mean-Payoff Objectives under
Infinite-Memory Strategies

In this section, we consider games with a conjunction of mean-
payoff objectives and infinite-memory strategies for player Max
(which are more powerful than finite-memory strategies [47,
Lemma 7]).

5.1 MeanInf objectives

SinceMeanInf objectives are prefix-independent and closed un-
der shuffling, it follows from the results of [35, Theorem 5.2] that
for playerMin memoryless optimal strategies exist. Therefore the
value and value-strategy problems can be solved in coNP by guess-
ing a (optimal) memoryless strategy for playerMin, and then solv-
ing an MDP with conjunction of mean-payoff objectives under
infinite-memory strategies, which can be done in polynomialtime
by the result of [8, Section 3.2]. A matching coNP-hardness bound
is known for 2-player games [47, Theorem 7].

Theorem 7. The value and the value-strategy problems for
stochastic games with generalized mean-payoff-inf objectives un-
der infinite-memory strategies are coNP-complete.

5.2 MeanSup objectives

It follows from the results of [19, Lemma 7] and [34, Theo-
rem 4.1] that to establish the complexity result for the value and
the value-strategy problem it suffices to establish the complexity
for the almost-sure problem. For mean-payoff-sup objectives, we
show that the almost-sure winning problem is in NP∩ coNP. For
playerMax to be almost-sure winning for a conjunction of mean-
payoff-sup objectives, it is necessary to be almost-sure winning
for each one-dimensional mean-payoff-sup objective, and we show
that it is sufficient. An almost-sure winning strategy is to play in
rounds according to the almost-sure winning strategy of each one-
dimensional objective successively, for a duration that isalways
finite but longer and longer in each round to ensure the correspond-
ing one-dimensional average of rewards (thus over finite plays)
tends to the objective mean-payoff value with high probability (that
tends to1 as the number of rounds increases).

Theorem 8. The value and the value-strategy problems for
stochastic games with generalized mean-payoff-sup objectives un-
der infinite-memory strategies are in NP∩ coNP.

Improving the NP∩ coNP bound to PTIME for even single
dimensional objectives would be a major breakthrough, as itwould
imply a polynomial solution for simple stochastic games [26].

6. Conclusion
In this work we consider 212-player games with generalized mean-
payoff objectives. We establish an optimal complexity result of
coNP-completeness under finite-memory strategies, which signif-
icantly improves the previously known semi-decision procedure,
even for the special case of the almost-sure problem. We alsoes-
tablish optimal bounds for the memory required for finite-memory
strategies. Given several quantitative objectives, a moregeneral



problem is to consider a different probability threshold for each ob-
jective (in contrast we consider the probability of the conjunction
of the objectives). For the almost-sure problem the more general
problem coincides with the problem we consider. The more general
problem is open, even for the special case of multiple reachability
objectives in 212-player games.
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