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Abstract

Graph games provide the foundation for modeling and synthe-
sizing reactive processes. In the synthesis of stochastictive
processes, the traditional model is perfect-informatitotisastic
games, where some transitions of the game graph are ceutinfl
two adversarial players, and the other transitions areugedqrob-
abilistically. We consider such games where the objectvéehée
conjunction of several quantitative objectives (specifisdnean-
payoff conditions), which we refer to as generalized meayoff
objectives. The basic decision problem asks for the existaf

a finite-memory strategy for a player that ensures the gknera
ized mean-payoff objective be satisfied with a desired fitiba
against all strategies of the opponent. A special case ofi¢kae
sion problem is the almost-sure problem where the desireld-pr
ability is 1. Previous results presented a semi-decisiocgmure
for e-approximations of the almost-sure problem. In this work, w
show that both the almost-sure problem as well as the gebasal
decision problem are coNP-complete, significantly impmgvihe
previous results. Moreover, we show that in the case of fepla
stochastic games, randomized memoryless strategies féotesit
and the problem can be solved in polynomial time. In contiiast
two-player stochastic games, we show that even with rarzkmni
strategies exponential memory is required in general, apsept a
matching exponential upper bound. We also study the basie de
sion problem with infinite-memory strategies and presentmo
tational complexity results for the problem. Our results malevant

in the synthesis of stochastic reactive systems with naltjpan-
titative requirements.
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1. Introduction

Reactive systems are non-terminating processes thaaateon-
tinually with a changing environment. Since such systerasian-
terminating, their behavior is described by infinite segasnof
events. The classical framework to model reactive systeitts w
controllable and uncontrollable events are games on gréplise
presence of uncertainties, we have stochastic reactiversgswith
probability distributions over state changes. The pertoroe re-
quirement on such systems, such as power consumption ocyate
can be represented by rewards (or costs) associated to ¢hesev
of the system, and a quantitative objective that aggreghtese-
wards of an execution to a single value. In several modelmg d
mains, however, there is not a single objective to be opgdhibut
multiple, potentially dependent and conflicting goals. &ammple,

in the design of an embedded system, the goal may be to maxi-
mize average performance while minimizing average power co
sumption. Similarly, in an inventory management system,gbal
would be to optimize the costs associated to maintaining kel

of product [1, 31]. Thus itis relevant to study stochastimga with
multiple quantitative objectives.

Perfect-information stochastic gamesA perfect-information
stochastic graph game [26], also known as turn-based sticha
game oQ%-player graph gameconsists of a finite directed graph
with three kinds of states (or vertices): playdex, playerMin,
and probabilistic states. The game starts at an initiak stad
is played as follows: at playdvtax states, playeMax chooses a
successor state; at play®lin states, playeMin (the adversary of
playerMax) does likewise; and at probabilistic states, a successor
state is chosen according to a fixed probability distributibhus
the result of playing the game forever is an infinite pathulgiothe
graph. If there are no probabilistic states, we refer to tiag as
a 2-player graph gamgef there are no playeMin states, we refer
to the (]%-player) game as a Markov decision process (MDP); if
there are no probabilistic states and no playki-states, then the
(1-player) game is a standard graph.

The class of 2-player graph games has been used for a long
time to synthesize non-stochastic reactive systems [1048P
a reactive system and its environment represent the two- play
ers, whose states and transitions are specified by the e®icd
edges of a game graph. Similarly, MDPs have been used to model
stochastic processes without adversary [31, 43]. Consmlqué%-
player graph games, which subsume both 2-player graph gamdes
MDPs, provide the theoretical foundation to model stodhastc-
tive systems [31, 44].

Mean-payoff objective®©ne of the most classical example of quan-
titative objectives is the mean-payoff objective [29, 33, 33],
where a reward is associated to each state and the payoftdii &sp
the long-run average of the rewards of the path (computedtes e
lim inf or lim sup of the averages of the finite prefixes to ensure



the payoff value always exists). While traditionally theifieation
and the synthesis problems were considered with Booleagtobj
tives [40, 42, 45], recently quantitative objectives hageeived a
lot of attention [6, 7, 11], as they specify requirements esource
consumption (such as for embedded systems or power-lirayted
tems) as well as performance-related properties.

Various semantics for multiple quantitative objectiv@fie two
classical semantics for quantitative objectives are &svisl[8]: the
firstis the expectation semantics, which is a probabilesterage of
the quantitative objective over the executions of the systend the
second is the satisfaction semantics, which consider tieapility

of the set of executions where the quantitative objectivat isast

a required threshold value The expectation objective is relevant
in situations where we are interested in the “average” hiehawof
many instances of a given system, while the satisfactioaaivp is
useful for analyzing and optimizing the desired executi@amsl is
more relevant for the design of critical stochastic re&ctystems
(see [8] for a more detailed discussion). For example, dengine
mean-payoff objective that specifies the set of executioherev
the average power consumption is at most 5 units, and another
mean-payoff objective that specifies the set of executioherev
the average latency is at most 10 units. A multiple objectisks
to satisfyboth, i.e., their conjunction. We refer to such objectives
(i.e., conjunction of multiple mean-payoff objectives)general-
ized mean-payoff objectivesThe goal of playeMax is to maxi-
mize the probability of satisfaction of the generalized mpayoff
objective while playeMin tries to minimize this probability, i.e.,
the game is zero-sum. Concrete applications %)fpiayer graph
games with generalized mean-payoff objectives have beesido
ered, such as best-effort synthesis where the goal is tanizai
the violation of several incompatible specifications [I2Rhl-time
scheduling algorithms with requirements on the utility @mergy
consumption [21], and electric power distribution in arcenes ap-
plication [4]. In particular, for the real-world avionicgplication

in [4], both two adversarial players, stochastic tranegicas well
as multiple mean-payoff objectives are required, i.e.,applica-
tion can be modeled as%aolayer graph games with generalized
mean-payoff objectives, but not in a strict subclass.

Computational questiondn this work, we consider ?—player
graph games with generalized mean-payoff objectives irsatis-
faction semantics. A strategy for a player is a recipe thamgthe
history of interaction so far (i.e., the sequence of stgtescribes
the next move. The basic decision problem asks, give%ralayer
graph game, a generalized mean-payoff objective, and apileb
ity thresholda, whether there exists a strategy for playjésx to
ensure the objective be satisfied with probability at leaagainst
all strategies of play&¥lin. Since strategies in games correspond to
implementations of controllers for reactive systems, d@i@aarly
relevant question is to ask for the existence of a finite-mgrsiwat-
egy in the basic decision problem, instead of an arbitraatey.
Moreover, an important special case of the basic decisiobl@m
is the almost-sure problem, where the probability thresholis
equal tol.

Previous resultsWe summarize the main previous results for
MDPs, 2-player graph games, ané-ﬁlayer graph games, with
generalized mean-payoff objectives.

1. MDPs. The basic decision problem for generalized mean-
payoff objectives in MDPs with infinite-memory strategiesic
be solved in polynomial time [8]. The problem under finite-
memory strategies has not been addressed yet.

11n the verification literature, conjunction of reachaliliBiichi, and parity
objectives, are referred to as generalized reachabilépernlized Buchi,
and generalized parity objectives, respectively, and igdimed mean-
payoff objectives naming is for consistency.

2. 2-player gamesThe following results are known [47]: the basic
decision problem for generalized mean-payoff objective2-i
player graph games, both under finite-memory and infinite-
memory strategies, is coNP-complete; moreover, for irinit
memory strategies if the mean-payoff objective is defined as
the limit supremum of the averages (rather than limit infimum
of the average), then the problem is in NRRONP.

.Zé-player games.The almost-sure problem for generalized

mean-payoff objectives in%;}player graph games under finite-

memory strategies was considered in [4], and a semi-algorit

(or semi-decision procedure) was presented for approiomat

of the problem.

Memory of strategiesInfinite-memory strategies are strictly

more powerful than finite-memory strategies, even in 1-glay

graph games thus also in MDPs and 2-player graph games: there
are games where an infinite-memory strategy can ensure the
objective with probability 1 while all finite-memory strafies

fail to do s [47].

Our contributions. The previous results suggest tha%-ﬁlayer
graph games with generalized mean-payoff objectives arsider-
ably more complicated than 2-player graph games as well aBdviD
as even the decidability of the almost-sure problem was dpen
Zé-player graph games for finite-memory strategies (the ptevi
result neither gives an exact algorithm, nor establishe&ldbility

for approximation). In this work we present a complete pietaf

decidability as well as computational complexity. Our tesare as

follows:
1. MDPs. First we study the generalized mean-payoff prob-
lem under finite-memory strategies in MDPs. We present a
polynomial-time algorithm, and show that with randomiaati
memoryless strategies (which do not depend on histories but
only on the current state) are sufficient, i.e., for finiternogy
optimal strategies no memory is required.

. Zé-player gameskor 2%-p|ayer graph games with generalized
mean-payoff objectives we show that: (1) the basic decision
problem is coNP-complete under finite-memory strategigs (s
nificantly improving the known semi-decidability result fap-
proximation of the almost-sure problem [4]), and moreotres,
same complexity holds for the almost-sure problem; andr{2) u
der infinite-memory strategies, the computational coniplex
results coincide with the special case of 2-player graphezam

. Memory of strategiedJnder finite-memory strategies, in con-
trast to MDPs where we show with randomization no memory
is required, we establish an exponential lower bound (evign w
randomization) for memory required ir%:player graph games
with generalized mean-payoff objectives. We also present a
matching upper bound showing that exponential memory is suf
ficient.

4.

Key technical insightsWe show that for generalized mean-payoff

objectives, for the adversary, pure and memoryless stestege

sufficient. Under finite-memory strategies for playésx, this re-

sult is established using the following ideas:

¢ In general for prefix-independent objectives (objectives to

not change if finite prefixes are added or removed from a path),
we show that sub-game perfect strategies exist, where ta stra
egy is sub-game perfect if it is optimal after every finite-his
tory. Such a result is known for infinite-memory strategies u
ing results from martingale theory [35]. Our proof for finite
memory strategies is conceptually simpler, and uses camnbin

2However, in some variants of the decision problem (such asinieg the
mean-payoff value, computed as then inf of the averages of the finite
prefixes, be strictly greater than a threshe)dinite-memory strategies are
as powerful as infinite-memory strategies [25].



torial arguments and well-known discrete properties of MDP
(see Lemma 2, Section 3).

Supp(d(s,a)) C U. A closedset in an MDP isaseV C S
such thatAy (s) # @ foralls € U. AsetU C S is anend-

¢ Then using the above result we show that for a sub-class of componen{27] if (i) U is closed, and (ii) the graptU, Ev) is

prefix-independent objectives (that subsume generalizzhm
payoff objectives) for the adversary pure memorylessesgias
suffice (see Theorem 1, Section 3). Moreover, for this cldss o

objectives we establish determinacy when each player is re-

stricted to finite-memory strategies, which is of indepemdie-
terest (see also Theorem 1); and also show that such determ
nacy result does not hold for all prefix-independent objesti
(see Remark 3).

For MDPs, we generalize a result of [39] from graphs to
MDPs, to obtain a linear-programming solution for the gener
alized mean-payoff objectives under finite-memory stiateg
(see Theorem 3, Section 4).

Combining these results we obtain the coNP upper bound &r th
basic decision problem for%zplayer graph games and the coNP
lower bound follows from existing results on 2-player gragatmes
(see Theorem 5, Section 4). Detailed proofs are availaltE6h

Related worksWe have described the most relevant related works
in the paragrapPrevious resultsWe discuss other relevant related
works. Markov decision processes with multiple objectihase
been studied in numerous works, for various quantitatiiemb
tives, such as mean-payoff [8, 13], discounted sum [18, t284)
reward [32] as well as qualitative objectives [30], and itlveimbi-
nations [2, 3, 23, 25]. The problem of 2-player graph gameh wi
multiple quantitative objectives has also been widely ismidoth

for finite-memory strategies [9, 22, 37, 46, 47] as well axitdi
memory strategies [17, 47]. In contrast, fo}-alayer games with
multiple quantitative objectives only few results are kmd#, 24],
because of the inherent difficulty to handle two-playersbpbilis-

tic transitions, as well as multiple objectives all at thensaime.

A semi-decision procedure for approximation of the alnmse
problem for %-player games with generalized mean-payoff objec-
tives was presented in [4], which we significantly improvéneT
class of %-player graph games with positive Boolean combina-
tions of total-reward objectives was considered in [24]d dine
problem was established to be PSPACE-hard and undecidable f
pure strategies.

2. Definitions

Probability distributions. For a finite setS, we denote byA(S)
the set of all probability distributions ove, i.e., the set of func-
tionsp : S — [0,1] such thaty . p(s) = 1. Thesupportof p
is the setSupp(p) = {s € S | p(s) > 0}. Foraset/ C S let
p(U) =2 cu p(s):
Perfect-information stochastic games.A perfect-information
stochastic gaméfor brevity, stochastic games in the sequel) is
a tupleG = (S, (Smax, Smin), A, ), consisting of a finite set
S = Smax W Swmin Of states partitioned into the s8is.« of states
controlled by playeMax (depicted as round states in figures) and
the setSwin Of states controlled by playéfin (depicted as square
states in figures), a finite set of actions, and a probabilistic tran-
sition functiond : S x A — A(S). If §(s,a)(s’) > 0, we say
thats’ is ana-successonf s. A transitiond(s, a) is deterministic
if (s,a)(s’) = 1 for some stata’. The underlying graph of is
(S, E) whereE = {(s,s") | §(s,a)(s") > 0 for somea € A}.

For complexity results, we consider that the probabilities
stochastic games are rational numbers with numerator amzhue
inator encoded in binary.

Markov decision processes and end-componenta. Markov de-
cision proces¢MDP) is the special case of a stochastic game where
either Smax = @, or Suin = <. Given a states € S and a set
U C S, let Ay(s) be the set of all actions € A such that

strongly connected whetBy = {(s,t) € U x U | §(s,a)(t) >
0 for somea € Ay (s)} denote the set of edges given the actions.
We denote by (M) the set of all end-components of an MDP.

Markov chains and recurrent sets.A Markov chainis the special
_case of an MDP where the action sétis a singleton. In Markov
I"chains, end-components are caltdoised recurrent sets

Plays and strategiesA playis an infinite sequences; ... € S¢

of states. Arandomized strategfor Max is a recipe to describe
what is the next action to play after a prefix of a play ending
in a state controlled by playeax; formally, it is a function

o : S"Suwax — A(A) that provides probability distributions over
the action set. Aoure strategyis a functiono : S*Sua.x — A that
provides a single action, which can be seen as a special tase o
randomized strategy where for every play prefig S*Sua.x there
exists an actiom € A such that(p)(a) = 1.

We consider the following memory restrictions on strategie
strategy ismemorylestf it is independent of the past and depends
only on the current state, thatésp) = o(Last(p)) for all play
prefixesp € S*Swmax, WherelLast(so ...s,) = sk. In the sequel,
we call memoryless strategies the pure memoryless steatemnd
we emphasize that strategies Sva.x — A(A) are not necessarily
pure by calling them randomized memoryless.

A strategyo usesfinite memoryif it can be described by a
transducek M, mo, 0w, 0,) consisting of a finite set/ (the mem-
ory set), an initial memory value,yz € M, an update function
ow : M x S — M for the memory, and a next-action function
on : M — A(A); the transducefM, mo, o, 0r) defines the
strategyo such thato(p) = o (6. (mo, p)) for all play prefixes
p € S*Swmax Whereg,, extendss,, to sequences of states as usual
(i.e., 6u(m,p - s) ou(du(m, p),s)). Given a finite-memory
strategyo for playerMax, let G = (S, (&, Suin), A, 6") be the
MDP obtained by playingr in G, whereS’ = Sy, = S x M
and the transition functiod’ is defined for all(s,m) € S’ and
actiona € A of player Min as follows, for alls’ € S, where
m' = ou(m,s):

¢ if 5 € Smax, thend’((s,m),a)((s",m")) = 3, c 4 on(m’)(D)-
5(s,b)(s");
o if s € Smin, thend’ ((s,m),a)({s’,m')) = (s, a)(s").

Strategiesr for player Min are defined analogously, as well
as the memory restrictions. A strategy that is not finite-mgm
is referred to as an infinite-memory strategy. We denoteXby
the set of all strategies for play®&ax, and byxT | and M
respectively the set of all pure memoryless, and all finiexrary
strategies for playevlax. We use analogous notatidh IT”*, and
IIF™ for playerMin.

Objectives. An objectiveis a Borel-measurable set of plays [5].
In this work we consider conjunctions of mean-payoff ohjes.
Some of our results are related to more general classes ff-pre
independent and shuffle-closed objectives. We define tleeaet
objectives below:

1. Prefix-independent objective&n objectiveQ2 C S“ is prefix-
independentf for all plays p € S, and all states € S, we
havep € Q if and only if s - p € , that is the objective is
independent of the finite prefixes (of arbitrary length) of th
plays.

. Shuffle-closed objectives shuffleof two plays p1, p2 is a
play p = wiugus ... such thatu; € S* foralli > 1, and
p1 = urusus ... andps = uauaue . . .. An objective) € S¥
is closed under shuffling, if all shuffles of all plays, p2 € Q
belong tof2.



3. Multi-mean-payoff objectiveset rwd : S — Q* be areward
functior? that assigns &-dimensional vector of weights to
each state. Fot < j < k, we denote bywd; : S — Q
the projection of the functionwd on thej-th dimension. The
conjunction ofmean-payoff-infobjectives (which we refer as
generalized mean-payoff objectives) is the set

. k o 1 n—1
MeanlInf = {5031 €S| ][\lli{ggf - ; rwd;(s;) > 0}
that contains all plays for which the long-run average ofghis
(computed asim inf) is non-negativ&in all dimensions. The
objectives inside the above conjunction (indexed Byare
called one-dimensional mean-payoff-inf objectives (imeln-
sion j), and denotedVieanInf;. The conjunction ofmean-
payoff-supobjectives is the sd¥leanSup defined analogously,
replacinglim inf by lim sup in the definition ofMeanInf.

Remark 1. It is easy to show that mean-payoff-inf objectives are
closed under shuffling, and that the conjunction of objestithat
are closed under shuffling is closed under shuffling [38]. idoev,
the conjunctions of mean-payoff-sup objectives are in igémst
closed under shuffling [47, Example 1].

Probability measures.Given an initial state, and a pair of strate-
gies(o, 7) for Max andMin, a finite prefixp = so - - - s,, 0f @ play

is compatiblewith o and= if so = sandforall0 < i <n —1,
there exists an actiom; € A such thaty(s;, a;)(si+1) > 0, and
eithers; € Swax ando(so---ss)(a;) > 0, or s; € Swin and
m(so---si)(a;) > 0. A probability can be assigned in a stan-
dard way to every finite play prefig, and by Caratheodary’s ex-
tension theorem a probability meas®g™ (-) of objectives can be
uniquely defined. For MDPs, we omit the strategy of the player
with empty set of states, and for instancesifi, = @ we denote
by P{ () the probability measure under strateggf playerMax.

Value and almost-sure winning.The optimalvaluefrom an initial
states of a game with objectiv€ is defined by

{(Max))yai (€2, s) = sup inf PJ"(Q).
cex mEll

By Martin’s determinacy result [41], the optimal value isal
{(Min))a1(€2, s) = infremsup, s P2 (€2), the infimum proba-
bility of satisfying 2 that playerMin can ensure against all strate-
gies of playerMax. In other words the determinacy shows that
{Max)) a1 (€2, 8) = (Min)),a (2, s), and the order of sup and inf
in the quantification of the strategies can be exchanged.

A strategy o for player Max is optimal from a states if
for all strategiesr for player Min it ensures thafP?'™(2) >
{(Max)) a1 (2, s). The value (or winning probability) of a strategy
in states is (o) a1 (2, s) = infren PZ™(2). We omit analogous
definitions for playeMin.

We say that playeMax wins almost-surely from an initial
states if there exists a strategy for Max such that for every
strategyr of player Min we havelP? ™ (2) = 1. The states and
the strategy are calledalmost-surewinning for playerMax.

Finite-memory values and almost-sure winning.The optimal

finite-memory valuéfor playerMax) is defined analogously, when

the players are restricted to finite-memory strategies:
(Max) ' (2,5) = sup inf PIT(Q).

senFM mellF

3We use rational rewards to be able to state complexity mesAlt other
results in this paper hold if the rewards are real numbers.

4Note that it is not restrictive to define mean-payoff objeti with a
thresholdd since we can obtain mean-payoff objectives defined as tige lon
run average of weights above any thresheloy subtracting the constant

to the reward function.

A strategyo is optimal for finite memoryfrom a states if
it uses finite memory and for all finite-memory strategies
for player Min it ensures thatP?™(Q) > (Max)ZH(Q, s).
We define analogously almost-sure winning with finite-memor
strategies, and the finite-memory valug )% (Q,s) of o
in state s (against finite-memory strategies of play&fin).
We define the finite-memory value for playeMin by
(MiIn)EM(Q, 5) inf cprm sup,exrm P27 (Q)  and
the finite-memory value of strategyr for player Min by
(e (R, 8) = sup,exru PIT(Q2). We show in Theorem 1
for a large class of objectives (namely, prefix-independéntfle-
closed objectives) that the finite-memory value for plaisix
and for playeMin coincide, and allowing arbitrary strategies for
playerMin (against finite-memory strategies for playénx) does
not change the finite-memory value.

Subgame-perfect strategiesGiven a strategy for Max, and a
finite prefixp = so - - - s of a play, we denote by, the strategy
that plays from the initial state, whato would play after the prefix
p, i.e.suchthat,(si - p') = o(p- p’) for all play prefixes’, and

o,(s - p') is arbitrarily defined for alk # sy.

A strategyo for Max is subgame-perfedf for all nonempty
play prefixesp € ST, the strategys, is optimal from the initial
stateLast(p). Analogously, the strategy is subgame-perfect-for-
finite-memoryif all strategieso, are optimal-for-finite-memory
strategies frontast(p).

Value problems. Given an objective?, a threshold\ € Q, and
an initial states, the value-strategy problenasks whether there
exists a strategy for player Max such that{(c)),a(2,s) > A
(or whether there exists a finite-memory strategipr playerMax
such that{(c)£37(€,5) > A). Thevalue problemasks whether
{Max))vat (22, ) > X (resp., whethef{Max)) 72 (Q, s) > A).

End-component lemma. An important property of the end-
components in MDPs is that for all strategies (with finite mem
ory or not) with probability 1 the set of states that are editn-
finitely often along a play is an end-component [27, 28]. Gige
play p € S, let Inf(p) be the set of states that occur infinitely
often inp.

Lemma 1. [27, 28] Given an MDPM, for all statess € S and all
strategiess € X, we haveP ({p | Inf(p) € E(M)}) = 1.

Remark 2 (Key properties for MDPs) The end-component lemma
is useful in the analysis of MDPs with prefix-independent ob-
jectives, which can be decomposed into the analysis of te en
components (which have useful connectedness properdied)a
reachability analysis to the end-components. Moreoveppese
we consider prefix-independent objectives, and the MDPicesd

to an end-componerit. Then it follows from the results of [14]
that either all states ot/ have value 1 or all states df have
value 0. Hence for prefix-independent objectives in MDPs, th
optimal value is the optimal reachability probability toetkvin-
ning end-components, where a winning end-component is an end-
component with value 1.

3. Half-Memoryless Result under Finite-Memory
Strategies

We show a general result that gives a sufficient conditionefor
istence of memoryless strategies (for one of the playergaimes
played with finite-memory strategies.

Comment on finite- vs. infinite-memory prodhe statement and
proof structure of the result are similar to [35, Theorem a2t
established a sufficient condition for existence of menmesylop-
timal strategies in games played with arbitrary (infinitermory)
strategies. However, the proof uses different technigtibe. key



(s0,mo0)

{(Ming, var' (2, {s,ms)) > (Ming, )y’ (2, (s,m"))

Figure 1. Lemma 2: construction of a strateg{with higher value
in subgames than the optimal-for-finite-memory strategy

to establish the existence of memoryless strategies forobitiee
players is to first establish the existence of subgame-gtesfeate-
gies for the other player. We establish such a result in LeBma
for finite-memory strategies. Without the restriction oftérmem-
ory, only the existence of-subgame-perfect strategies is known,
and the proof requires intricate arguments and involvedemat-
ical machinery such as Doob’s convergence theorem for marti
gales [35, Theorem 4.1]. Our proof is combinatorial and sessc
results on MDPs (e.g., discrete properties of end-comgshen

Key ideas of the prooT.he proof of Lemma 2 consists in construct-
ing from a finite-memory strategy a strategy that is subgame-
perfect-for-finite-memory by successively “improvingeéttialue of
the strategys,, for each finite prefixyp. Improvements are obtained
by modifying some transitions in the transducer definingrom
the state reached after following the finite prefixThe modifica-
tion of transitions does not change the memory space of the st
egy, and since we consider finite-memory strategies, ajffntiere
may be infinitely many finite prefixeswhere the strategy needs to
be “improved”, there is only a finite number of memory states t
consider for improvement, which guarantees the improvemen
cess to terminate and yields a subgame-perfect-for-fimiezory
strategy.

Lemma 2. In every stochastic game with a prefix-independent ob-
jective, there exists a subgame-perfect-for-finite-mensbrategy
for player Max.

Proof. Our proof is established using the following key steps:

1. Existence of an optimal-for-finite-memory strategy féayer
Max.

2. Modification of the strategy for improvement of valueseaft
finite prefixes.

3. The proof that the modification provides an improvement in
two parts: once the strategy for playetax is fixed, we have
an MDP. In the MDP, we first show properties of the end-

can ensure positive winning from every state of a game, then
is almost-sure winning by the result of [14]. The existentam
optimal-for-finite-memory strategy follows.

Notation.Consider an optimal-for-finite-memory strategy Thus
for all statess of the gameG there exists a memory value
ms in the transducer ot such that the value of the objec-
tive Q2 in the MDP G, is the optimal finite-memory value, that is
{(Ming, ) EM (9, (s, m.)) = (Maxg))E} (2, 5) where the sub-
script in Ming, indicates that the value is computed in the MDP
G (which is a MDP for playeMin) while Maxg gives the optimal
value for playeiMax in the gameg.

Modification of the strategyf the strategyo is subgame-perfect-
for-finite-memory, then the proof is done. Otherwise, there
ists a state(s,m’) in G, with value below the optimal finite-
memory value ok, namely such thafMing, Y547 (9, (s, ms)) >
{Ming, WEXM(Q, (s,m’)). We construct arimprovedstrategyo’

as follows: the strategy’ plays likeo except that when the state
(s,m’) is reached, the strategy plays likes is playing from state
(s,ms) (equivalently, we remove the outgoing transitions from
state(s,m’) in G,, and replace them by a deterministic transition
to state(s, ms) on all actions to obtaig,, as illustrated in Fig-

ure 1). Note that the new strategy has the same memory set as
o. We show below that the value of every statefip is at least

as large as the value of the same stat&din(x). It follows that

the value of statés, m’) in G, is the optimal finite-memory value
from s, and by repeating the same construction in every state where
the value is below the optimal finite-memory value, we ob{#in
finitely many steps) a subgame-perfect-for-finite-memargtsgy

for playerMax.

Proof of (x). We proceed with the proof df), which has two steps

as mentioned above. We first define the notion of value class.

Value class and propertiedn the MDP G,,, a value classis a
maximal subset of states that have the same value (definde: as t
infimum over the strategies of playktin). The following property
holds inG., for every statd = (-, -), and actioms € A: consider
the value class of, if there is ana-successor of in a lower
value class, then there is also amsuccessor of in a higher
value class (Figure 2). If we consider the partition defingdhe
value classes ig,, this property also holds in the modified MDP
G, corresponding to strategy’, because the new deterministic
transition (dashed edge of Figure 1) goes to a higher vaasscl

Properties of end-componentsow, we claim that in the modified
MDP G, every end-component is included in some value class
(of the original MDPG,). We show this by contradiction (see also
Figure 2). Assume that there is an end-compor@nn G,, with
non-empty intersection with different value classes (efahiginal
MDP G,). Letz € C be a state of” with largest value. Since

C' is strongly connected, there is a path framo a lower value
class, and on this path there is a state C with largest value that
has ana-successor with lower value (for somer € Ac(y)). It
follows thaty has also am-successor with higher value, according

components, and second we provide bounds on the optimalto the above property. This successor is outgitisince there is

reachability probability to the end-components to esshbihe
improvement.

Optimal-for-finite-memory strategy¥Ve show the existence of a
finite-memory strategy for playerMax in the gamej such that

o is optimal-for-finite-memory from every state for the prefix
independent objectiv@. The fact that such a strategy always exists
is as follows: it follows from [34, Theorem 4.3] that it suffi§ to
prove the result for almost-sure winning strategies. Qierghe set

Z of states with value 1 for finite-memory strategies. We need t
show that there exists a finite-memory almost-sure winniragegyy

in Z. Let0 < e < 1, and consider a finite-memory strategy that
ensures value at least— ¢ from all states inZ. If a strategy

no larger value class i@’ than the value class a@f. This is in
contradiction with the fact that end-components are clss¢sl(and
thata € Ac(y)). We conclude that i, every end-component is
included in some value class (of the original MGR). Therefore,
the value of each end-componentdp:. is at least as large as the
value of the value class containing it @ ). It also follows that the
new deterministic transitions frofs, m’) to (s, m) do not belong
to any end-component i@, .

Optimal reachability probabilityThe key steps to obtain the bound
on optimal reachability probability is as follows: we obsethat
the optimal reachability probability in MDPs is characted by
a minimizing linear-programming solution, and we show ttinest
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Figure 2. Lemma 2: value-class analysis. No end-compor@nt
can lie across several value classes.

solution before the modification is a feasible solution raftee
modification. We now present the details.

Optimal value via optimal reachabilitye show that the value
of the state(s,m’) in G, is strictly greater than the value of
(s, m) in G, (for playerMax). Let Sjosing be the union of all end-
components irG, with value0 for the prefix-independent objec-
tive Q (thus losing for playeMax, and winning for playeMin).
By Remark 2, the optimal value for play®&fin in the MDP is the
optimal reachability probability t&osing-

Optimal reachability probability t&5;,si»4. Consider the following
linear program ing, = (S’, (&, Suin), 4,4’) that computes the
value (for playeMin) of each staté € S’ of G, in variablez;, by
solving a reachability problem to the statesSising:

minimize} ", o,
21> e 0 (la)(k) zpforalll e S',ac A
zy = 1foralll € Siosing

The correctness of the linear program to compute optimalhrea
ability probability is standard [31]. Let™ be an optimal solu-
tion of this linear program. Note that the values are congbfbe
playerMin, and thusz; = 1 — (Max))Z27(Q, 1). It follows that
Izs,'rrLS) < m?s,m’)'
Feasible solution.Consider the modified MDRj,, (with same
state space a$j,), in which the union of end-components
with value 0 is contained inS;.sing. Therefore, considering the
same linear program fog,, provides an upper bound on the
new value (for playerMin). For eachl € S’, definey,
xf if 1 # (s,m’)
Tl myy 1= (s,m’)
Then ()5 is a feasible solution to the linear program @y,
and for the optimal solution™, we havey; < y; < z; (and for
I' = (s,m’) we havey;, < yy < x};). Sincey;, is only an upper
bound of the new value offor playerMin in G,/, it shows that the
value improved for playeMax in every state. Since the value of
(s, ms) in G, was the optimal finite-memory value, it follows that
in G, the value of(s, ms) is also the optimal finite-memory value.
Since all transitions ofs, m’) lead to(s, m), the value of(s, m’)
in G, is the optimal finite-memory value from which concludes
the proof of(x). |

The result of [35, Theorem 5.2] shows that in games where the
players are allowed to use arbitrary strategies (thus stticeed to
finite-memory strategies), memoryless optimal strategiest for
playerMin if the objective of playeMax is prefix-independent and
closed under shuffling. The proof of this result uses an a@nedo
of Lemma 2 for arbitrary strategies, and relies on edge itiolic

a technique that became standard [15, 35, 36, 38]. The sHape o
the argument is not specific to games with arbitrary strategn
games where the players are restricted to finite-memortesies,

we can follow the same line of proof (using Lemma 2) to show tha
if the objective of a player is prefix-independent and closeder
shuffling, then memoryless optimal strategies exist for dtteer
player.

Theorem 1. In stochastic games, if the objectigof playerMax
is prefix-independent and closed under shuffling, and pl&ieexris
restricted to finite-memory strategies, then plajéin has a mem-
oryless optimal-for-finite-memory strategy (as well as anogy-
less optimal strategy), and determinacy holds under fimgmory
strategies. More precisely, for all statesve have:

FM

(Max) 5" (€, s) = (Min) F0 (2, s) =: v(s), and
sup inf P7"(Q,s) =wv(s)= inf sup PI"(Q,s).

sexFM mell nellPM s FMm

Significance of Theorem WWe first remark on the significance
of the result, and then present the main steps of the proof.
First, the result establishes determinacy for finite-megmnstrate-
gies i.e.,{(Max)Z2(Q, s) (Min)EM(Q ) v(s), which
implies that even for finite-memory strategies the order u s
and inf can be exchanged. However, note that the finite-mgmor
value is different from the value under infinite-memory stra
gies, and the determinacy for finite-memory does not follow
from the determinacy for infinite-memory strategies. Segon
sup,exrum infren P37 (92, s) = wv(s) implies that as long as
player Max is restricted to finite-memory strategies, whether
playerMin uses finite-memory or infinite-memory strategies does
not matter. Finallyp(s) = inf, cypm sup,exrm P37 (€, s) im-
plies that against finite-memory strategies of plalykix there ex-
ists a pure memoryless strategy for plaiéin that is optimal (even
considering all infinite-memory strategies for playéin).

Main steps of the proofle present the key steps of the proof of
Theorem 1, and we show that the argument in the proof of [35,
Theorem 5.2] (which we refer to for the precise technicapste
can be adapted for finite-memory strategies. The key steis ar
(i) induction on the number of playawin states; (ii) creating dif-
ferent games for different choices at a plajéin state, in which
playerMin has memoryless optimal strategies by induction hypoth-
esis; and (iii) showing the value of the original game is atste
the minimum of the value of the different games, thus meness/|
strategies suffice.

Induction on playeMin states.The proof is by induction on the
number of states of playévlin. The base casgswin| = 0 corre-
sponds to games with only states of plajésix. The result holds
trivially in that case (the empty strategy of playdin is memo-
ryless). For the induction step, assume that the resulstfolidall
games with Swin| < k, and consider a gan@with |Swin| = k.
Different games for different choiced/e explain the rest of the
proof assuming the action set contains only two actiong, itha
A = {a,b}. The proof is the same for an arbitrary finite set of
actions, with more complication in the notation. ¢ty consider a
states € Swin Of player Min and construct two game$, and

Gy obtained fromG by removings and by replacing the incoming
transitions tas by transitions to its:i-successors andsuccessors
respectively. The transition function &, (for x € {a,b}) is
defined byd. (s, c)(s") = (s, c)(s") + (s, c)(8) - 6(8,z)(s") for
alls,s’ € S\ {8}, and all actiong € A.

Value of original game at least the minimum of the value of the
two gamesln G, and G, the number of states of play&din is

k — 1. Hence by the induction hypothesis there exist memoryless
strategiesr9e and 9 for playerMin that are optimal-for-finite-
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Figure 3. A game with prefix-independent objectiBdichi(s2) A
(coBiichi(s2) V MeanSup) that is not determined under finite-
memory strategies.

memory (as well as optimal among the infinite-memory stiatgg

ists a compatible play that eventually stays foreversin and
then the objectivéBiichi(sz) is violated, or (i) sz is visited in-
finitely often in all compatible plays and play&tin can ensure
with a finite-memory strategy that both objectiidganSup and
coBiichi(s2) are violated by staying irs. one more time than
player Max stayed insi, and then going back te;. It follows
that (o) 52 (€, s1) = 0. Analogously, against all finite-memory
strategiesr of playerMin, player Max can ensure that the objec-
tive Q is satisfied (by staying is; one more time than playeévin
stayed inss, and then going tass), thus (7)) (Q,s1) = 1.
Hence(Max)Z2(Q, 51) # (Min)EM(Q, s1) and the game of

in G, andg, respectively. The proof proceeds by showing that in - Figure 3 is not determined under finite-memory strategies.

the gameg, playerMin cannot obtain a lower (i.e., better) value
than in one of the game8, or G, that is for all strategieg of
playerMin, for all statess # § we havé:

() et (2, 8) > min { (9 )11 (2, 5), (79 )i (2, 5) }(.1)
To show this, we consider subgame-perfect-for-finite-mgmo
strategiesr, and o, for player Max in gamesg,, and G, respec-
tively (which exist by Lemma 2), and we construct a finite-nogyn
strategyo in G that achieves, against all strategies value at least
as large as either, in G, or o, in G;. Intuitively, o switches be-
tweeno, and oy, playing according tar, when in the last visit
to § player Min played actioru (thus as inG,), and playing ac-
cording too, when in the last visit t& player Min played action

b (thus as inG,). To formally defines, given a play prefix irG we
use projections onto plays &, (resp.,Gs) that erase all sub-plays
between successive visits favhere actiorb (resp., actioru) was
played ins. Note thats uses finite memory. The plays compatible
with o andw are shuffles of plays compatible with, in G, and
plays compatible witlr;, in G, and since the objectiv@ is closed
under shuffling, the probability measure of the plays satigfthe
objective ingG is no lower than the value of either gam@sor G,:

P27(Q) > min { (79 )ial’ (2, 8), (79 )ial’ (2, 9) }-

It follows that (1) holds, and thus the optimal-for-finiteemory
(as well as optimal among infinite-memory strategies) styiat
in the gamegj, and G, (extended to play: and b respectively
in §) are sufficient for playeMin in G. Therefore by the induc-
tion hypothesis, memoryless strategies are sufficientl&ygoMin
to achieve the optimal finite-memory value, fetbe such a strat-

Upper bound on memorWe now show that for prefix-independent
shuffle-closed objectives, the memory required for playlex is
exponential as compared to the memory required for the same
objective in MDPs. If there aré states for playeMin, then the
optimal-for-finite-memory strategy constructed for playeMax

in the proof of Theorem 1 is as follows: it considers stragsgn the
choice-fixed gamegj, andg,) with £ — 1 states for playeMin,

and the strategy in the original game considers projectibptays

and then copies the strategies of the choice-fixed gamess Thu
the memory required for playévlax in games withk states for
playerMin is the union of the memory required for the choice-fixed
games withk — 1 states, and there are at mp4dt such choice-fixed
games. If we denote hy/ (k) the memory required for play@dax

in games withk playerMin states, then the following recurrence is
satisfied:

M(k)=|A|- M(k—1).
Note that) (0) represents the memory bound for MDPs, and thus
we get a bound o (k) = |A[F - M(0) in games that is greater
than the memory bound for MDPs by an exponential factor.
Theorem 2. In stochastic games with a prefix-independent shuffle-
closed objective?, an upper bound on the memory required for
optimal-for-finite-memory strategies isd|/“¥l . M(0), where
M(0) is an upper bound on memory required for objecti¥en
MDPs.

4. Generalized Mean-Payoff Objectives under
Finite-Memory Strategies

egy. By the same argument and using the induction hypothesis In generalized-mean-payoff games, infinite-memory Spiate

for the finite-memory strategy for player Max in G we have
(0Nea(Q,8) = (oD val’ (25) = (mhia’ (2, ), which gives
(Max)EM(Q, s) = (Min)E2(Q, s). Note that our proof han-
dled that the strategies for playbtin are allowed to be infinite-
memory, and the result still holds.

Remark 3. The determinacy result of Theorem 1, which allows

to switch thesup and inf operators ranging over finite-memory
strategies, is true for prefix-independent shuffle-clodgi@atives.

We present an example to show that such a result does not hold

for general prefix-independent objectives that are notedoan-
der shuffling. Consider the game of Figure 3, with the objecti
Q = Biichi(s2) A (coBiichi(s2) V MeanSup) whereBiichi(sz)

is the set of plays that visi, infinitely often, andcoBiichi(s2)

is the set of plays that eventually staysinforever. Note that the
game is even non-stochastic. We show tfdax)) 737 (Q, s1) = 0
and (Min)"M(Q, s1) = 1. Intuitively, after either player fixed
a finite-memory strategy, the other player can win usinghshg
more memory than the first player (but still finite memory) Fo
all finite-memory strategies of player Max, either (i) there ex-

>We assume that the valyer9)) ")/ (2, 5) of a strategyr? is computed
in the gameg in superscript.

are more powerful than finite-memory strategies, even in 1-
player games with only deterministic transitions, i.eaqirs [47,
Lemma 71° It follows that in general (Max)),u(Q,s) #
(Max)E2(Q, s) in generalized-mean-payoff games (for both
Q = MeanSup and2 = Meanlnf). In this section, we consider the
value problem for finite-memory strategies, and presentptexa

ity results showing that the problem is in PTIME for MDPs, asid
coNP-complete for games. Finally we present optimal bodads
memory required in ;-player games.

4.1 Generalized mean-payoff objectives under finite-memgr
in MDPs

We consider the value problem for finite-memory strategies i
MDPs with generalized mean-payoff objectives. First wewsho
that randomized memoryless strategies are as powerful ites- fin
memory strategies, and then using this result we show thattiue
problem can be solved in polynomial time.

Note that in finite-state Markov chains with a fixed reward
function, from all statess, the probability that the conjunction

61n the example of [47, Lemma 7] all finite-memory strategiesenwin-
ning probability O while there exists an almost-sure wignatrategy (with
infinite memory).
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Figure 4. Linear program for an MDP with two-dimensional mean
constraintsf; > 0fori = 1,...,5 are omitted in the figure).

MeanSup of mean-payoff-sup objectives holds fronis the same
as the probability that the conjunctidfieaninf of mean-payoff-
inf objectives holds froms [31]. It follows that in MDPs with
finite-memory strategies, the value for mean-payoff-suprapan-
payoff-inf objectives coincides, thugMax) 2! (MeanSup, s) =
{Max) 2 (Meanlnf, s) for all statess.

val
Key ideasLet M = (S, A, ) be an MDP andwd : S — R” be
a reward function. The key ideas to show that randomized memo
ryless strategies are sufficient for generalized meanfpapgec-
tives are: (i) first observe that the mean-payoff value ofegy ple-
pends only on the frequency of occurrence of each stateyr)
der finite-memory strategies the frequencies are well deffnéth
probability 1) for each state and action, and (iii) given firegjuen-
cies of a finite-memory strategy, a randomized memoryleatesty
that plays at every state an action with probability projpod! to
the given frequencies achieves the same frequencies asitiee fi
memory strategy.

-payaiffective (the

of LP (f1 = fs %andf2:f3:
f+ = fs5 = 0). However, no single end-
component is a solution.

mial time using a reduction to linear programming [31]. Tarco
plete the proof, we present a solution to compute the winaimdy
components in polynomial time. Our approach extends a tqahn
for finding in a graph a cycle with sum of rewards equal to zero i
all dimensions [39]. First, we present a linear progranto find

a union of end-components with nonnegative sum of rewatds (t
end-components may be disjoint). The variabffies represent the
frequency of playing actiom in states. The linear prograniP
consists of the following constraints (see also Figure 4):

(E1) foreachs € St . 4 fsa = Dics 2oaea ftia - 0(t,a)(s)
(E2) > cs X uca fs,a - rwd(s) > 0 (component-wise)

(E3) ZSES ZaEA fs,a =1

(E4) foreachs € Sanda € A: fso >0

The equations (E1) above express that in every state, tbening

Thus randomized memoryless strategies can achieve the samgrequency is equal to the outgoing frequency. Equation (&)

values as arhitrary finite-memory strategies. By Remarle2atim-
ning probability from an initial state is the maximum probizp
to reach end-components with valuewhich is obtained by a pure
memoryless strategy. It follows that randomized memopytsate-
gies are sufficient in MDPs with mean-payoff objectives @iz
the finite-memory value.

Lemma 3. In all MDPs with a generalized mean-payoff objective,
there exists an optimal-for-finite-memory strategy thatisdom-
ized memoryless.

Polynomial-time algorithm We present a polynomial-time algo-
rithm to compute the value in generalized mean-payoff MDRIs w
finite-memory strategies. The key steps of the algorithm are

¢ The algorithm determines all end-components with val(tae
winning end-components), and then computes the maximum
probability to reach the union of the winning end-compogeent
(see Remark 2).
The first step to obtain the winning end-components is to defin
a linear program based on the frequencies that gives a ufion o
end-components with frequencies that satisfy the gerzexhli
mean-payoff objective. However, this union of end-compaise
itself may not be connected, even though it is part of a larger
end-component. In the infinite-memory strategy case, thespa

sures that the mean-payoff value is nonnegative (in all dsioms).
Equations (E3) and (E4) require that the frequencies araaga
tive and sum up ta.

Illustration. In the example of Figure 4, a solution to the linear pro-
gram gives for instancg, = %6 andf; = % which corresponds
to a randomized memoryless strategy that chooses $icim go to

s2 with probability == = § and to go tofs3, s4} with probability
% = % This strategy satisfies the conjunction of mean-payoff
objectives with probability 1 (it ensures that the long-awerage

of the rewards is;—2 > 0in both dimensions).

Issues regarding connectedneggguments similar to the proof

of [39, Theorem 2.2] show that the linear prograf has a solu-
tion if and only if there exists a union of end-componentd4rand
associated frequencies with nonnegative sum of rewardseirr,

this union of end-components need not to be connected arsd thu
may not be an end-component (see Figure 5 where the unioe of th
end-component$s; } and{s3} corresponds to a solution aP).
Note that connectedness is not an issue for infinite-mentoayes
gies: in the example of Figure 5 there exists an infinite-mgmo
strategy to ensure the mean-payoff objectives with prdihati
(see [47, Lemma 7]).

Ensuring connectedness and frequenci&s. find single end-

between the union of end-components can be used with van- components with nonnegative sum of rewards, we adapt a tech-

ishing frequency to ensure the generalized mean-payoéfcebj
tives. However, for finite-memory strategies connectesioés

nigue presented in [39, Section 3]. Construct a gréph with set
S of vertices, and for each pais,a) € S x A, if the linear pro-

the union of the end-components must be ensured. We ShOWgramLp A fe.a > 0 has a solution, add edgés, t) in G for all

how to combine the linear program with a graph-based algo-
rithm to ensure connectedness and get a polynomial-tinte alg
rithm.

Frequency-based linear prograntt is known that the winning
probability for reachability objectives can be computegatyno-

a-successors of s. If the graphGs is strongly connected, then it
defines an end-component with nonnegative sum of rewarfl§.in
Otherwise, consider the maximum-scc decompositio& f, and
iterate the algorithm in each scc, until the state spacecesdio one
element. The algorithm identifies in this way all (maximaihmning



end-components and arguments similar to [39, Theorem B&y s
that this algorithm runs in polynomial time, as the recungiepth

is bounded by the number of states, and the scc decomposition
sures that the graphs in each recursive call of a given degth a
disjoint.

Theorem 3. The following assertions hold for MDPs with gener-
alized mean-payoff objectiv€s € {MeanSup, Meanlnf}:

1. There exists a randomized memoryless strategsuch that
(Max) M (Q, s) = PZ(9Q, s) for all statess (i.e., randomized
memoryless optimal strategies wrt. to finite-memory stiats).

2. The value and value-strategy problems for generalizednme
payoff MDPs under finite-memory strategies (i.e., whether
(Max)E2(Q, s) > ) can be solved in polynomial time.

Insufficiency of pure memoryless strategidthile we show that
randomized memoryless strategies are sufficient, the draaip
Figure 4 shows that pure memoryless strategies are notisoffto
achieve the optimal finite-memory value: fram, a pure memory-
less strategy can either choosegand then the mean-payoff value
in the first dimension is-2 < 0, or choose{ss, s4} and then the
mean-payoff value in the second dimension%z < 0. Thus forall
pure memoryless strategies, the generalized mean-payjefftive
is violated with probability 1 although there exists an astasure
winning randomizednemoryless strategy (see the paragréipk-
tration after Lemma 3).

4.2 Generalized mean-payoff objectives under finite-memagr
in 23-player games

We present a result analogous to Theorem 1 for generalizad-me
payoff stochastic games showing that memoryless strategie
sufficient for playeMin against finite-memory strategies. Note that
the result extends Theorem 1 as mean-payoff-sup objectreasot
closed under shuffling (Remark 1).

Theorem 4. In stochastic games with objectivd) €
{MeanSup, MeanInf}, there exists an optimal-for-finite-memory
strategy for playerMax, there exists a memoryless optimal-for-
finite-memory strategy for playavlin, and determinacy holds un-
der finite-memory strategies, that is for all states

(Max) 5" (2, s) = (Min) EM (€, s) =: v(s), and

sup inf PJ""(Q,s) =v(s) =

Inf inf  sup PJ7(Q,s).
cenFM
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It follows that the value problem for generalized mean-gayo

games with finite-memory strategies can be solved in coNP by

guessing a memoryless strategy for playdin and checking
whether the value of the resulting MDP under finite-memaorgtst
gies for playeMax is above the given threshold, which can be done
in polynomial time (Theorem 3). By the result of [47, Lemma 5,
Lemma 6], the problem of deciding the existence of a finite-
memory almost-sure winning strategy for playdex in a game
(even with only deterministic transitions) with a conjupat of
mean-payoff-sup or mean-payoff-inf objectives is coNPdh@he-
orem 5 summarizes the results of this section.

Theorem 5. The value and value-strategy problems for stochastic
games with generalized mean-payoff-(inf or sup) objestplayed
with finite-memory strategies for play®tax (and finite- or infinite-
memory strategies for playédin) are coNP-complete.

4.3 Memory bounds for strategies in %-player games

objectives, exponential memory is necessary in generah eith
randomized strategies [16].

Theorem 2 and Theorem 3 establish|aki“vin| upper bound
on memory required for optimal-for-finite-memory stratsyiThus
we obtain the following result.

Theorem 6. The optimal bound for memory required for optimal-
for-finite-memory strategies for play&iax in generalized mean-
payoff stochastic games is exponential.

5. Generalized Mean-Payoff Objectives under
Infinite-Memory Strategies

In this section, we consider games with a conjunction of mean
payoff objectives and infinite-memory strategies for prajax
(which are more powerful than finite-memory strategies [47,
Lemma 7]).

5.1 Meanlnf objectives

Since MeanlInf objectives are prefix-independent and closed un-
der shuffling, it follows from the results of [35, Theorem JAtf2at

for player Min memoryless optimal strategies exist. Therefore the
value and value-strategy problems can be solved in coNP égsgu
ing a (optimal) memoryless strategy for playém, and then solv-
ing an MDP with conjunction of mean-payoff objectives under
infinite-memory strategies, which can be done in polynortimaé

by the result of [8, Section 3.2]. A matching coNP-hardnessl

is known for 2-player games [47, Theorem 7].

Theorem 7. The value and the value-strategy problems for
stochastic games with generalized mean-payoff-inf obesun-
der infinite-memory strategies are coNP-complete.

5.2 MeanSup objectives

It follows from the results of [19, Lemma 7] and [34, Theo-
rem 4.1] that to establish the complexity result for the gatund
the value-strategy problem it suffices to establish the dexity
for the almost-sure problem. For mean-payoff-sup objestiwe
show that the almost-sure winning problem is in NRoNP. For
playerMax to be almost-sure winning for a conjunction of mean-
payoff-sup objectives, it is necessary to be almost-sureing
for each one-dimensional mean-payoff-sup objective, anghow
that it is sufficient. An almost-sure winning strategy is taypin
rounds according to the almost-sure winning strategy of eae-
dimensional objective successively, for a duration thalhgays
finite but longer and longer in each round to ensure the qoores:
ing one-dimensional average of rewards (thus over finitgg)la
tends to the objective mean-payoff value with high probighithat
tends tol as the number of rounds increases).

Theorem 8. The value and the value-strategy problems for
stochastic games with generalized mean-payoff-sup dbgsctin-
der infinite-memory strategies are in NiPcoNP.

Improving the NPN coNP bound to PTIME for even single
dimensional objectives would be a major breakthrough, aeutd
imply a polynomial solution for simple stochastic games|[26

6. Conclusion

In this work we consider ?—player games with generalized mean-
payoff objectives. We establish an optimal complexity tesh
coNP-completeness under finite-memory strategies, whigtifs
icantly improves the previously known semi-decision prhoe,

We present both exponential lower bound and upper bound on even for the special case of the almost-sure problem. Weeslso

memory of strategies. We show that in games where finite mgmor
is sufficient to win almost-surely a conjunction of mean-qfay

tablish optimal bounds for the memory required for finiternogy
strategies. Given several quantitative objectives, a ngergeral



problem is to consider a different probability thresholddach ob-
jective (in contrast we consider the probability of the comtion
of the objectives). For the almost-sure problem the moresiggn
problem coincides with the problem we consider. The moregdn
problem is open, even for the special case of multiple rdzlitya
objectives in %-player games.
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