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Abstract

In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an

infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure

that the running sum of weights is always nonnegative. Generalized mean-payoff and energy

games replace individual weights by tuples, and the limit average (resp. running sum) of each

coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis

of resource-bounded processes with multiple resources.

We prove the finite-memory determinacy of generalized energy games and show the inter-

reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also

improve the computational complexity for solving both classes of games with finite-memory

strategies: while the previously best known upper bound was EXPSPACE, and no lower bound

was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that

the problem of deciding the existence of a winning strategy for the protagonist is NP-complete.

1 Introduction

Graph games and multi-objectives. Two-player games on graphs are central in many appli-

cations of computer science. For example, in the synthesis problem, implementations are

obtained from winning strategies in games with a qualitative objective such as ω-regular

specifications [18, 17, 1]. In these applications, the games have a qualitative (boolean) ob-

jective that determines which player wins. On the other hand, games with quantitative

objective which are natural models in economics (where players have to optimize a real-

valued payoff) have also been studied in the context of automated design [19, 10, 20]. In the

recent past, there has been considerable interest in the design of reactive systems that work

in resource-constrained environments (such as embedded systems). The specifications for

such reactive systems are quantitative, and these give rise to quantitative games. In most

system design problems, there is no unique objective to be optimized, but multiple, poten-

tially conflicting objectives. For example, in designing a computer system, one is interested

not only in minimizing the average response time but also the average power consumption.

In this work we study such multi-objective generalizations of the two most widely used

quantitative objectives in games, namely, mean-payoff and energy objectives [11, 20, 6, 3].

Generalized mean-payoff games. A generalized mean-payoff game is played on a finite

weighted game graph by two players. The vertices of the game graph are partitioned into

positions that belong to Player 1 and positions that belong to Player 2. Edges of the graphs

are labeled with k-dimensional vectors w of integer values, i.e., w ∈ Z
k. The game is played

as follows. A pebble is placed on a designated initial vertex of the game graph. The game

is played in rounds in which the player owning the position where the pebble lies moves the

∗ Full proofs are available in [9].
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pebble to an adjacent position of the graph using an outgoing edge. The game is played for

an infinite number of rounds, resulting in an infinite path through the graph, called a play.

The value associated to a play is the mean value in each dimension of the vectors of weights

labeling the edges of the play. Accordingly, the winning condition for Player 1 is defined by

a vector of integer values v ∈ Z
k that specifies a threshold for each dimension. A play is

winning for Player 1 if its vector of mean values is at least v. All other plays are winning

for Player 2, thus the game is zero-sum. We are interested in the problem of deciding the

existence of a finite-memory winning strategy for Player 1 in generalized mean-payoff games.

Note that in general infinite memory may be required to win generalized mean-payoff games,

but for practical applications such as the synthesis of reactive systems with multiple resource

constraints, the generalized mean-payoff games with finite memory is the relevant model.

Moreover, they provide the framework for the synthesis of specifications defined by [2, 8],

and the synthesis question for such specifications under regular (ultimately periodic) words

correspond to generalized mean-payoff games with finite-memory strategies.

Generalized energy games. In generalized energy games, the winning condition for Player 1

requires that, given an initial credit v0 ∈ N
k, the sum of v0 and all the vectors labeling edges

up to position i in the play is nonnegative, for all i ∈ N. The decision problem for generalized

energy games asks whether there exists an initial credit v0 and a strategy for Player 1 to

maintain the energy nonnegative in all dimensions against all strategies of Player 2.

Contributions. In this paper, we study the strategy complexity and computational complex-

ity of solving generalized mean-payoff and energy games. Our contributions are as follows.

First, we show that generalized energy and mean-payoff games are determined when played

with finite-memory strategies, however, they are not determined for memoryless strategies.

For generalized energy games determinacy under finite-memory coincides with determinacy

under arbitrary strategies (each player has a winning strategy iff he has a finite-memory

winning strategy). In contrast, we show for generalized mean-payoff games that determinacy

under finite-memory and determinacy under arbitrary strategies do not coincide. Thus

with finite-memory strategies these games are determined, they correspond to the synthesis

question with ultimately periodic words, and enjoy pleasant mathematical properties like

existence of the limit of the mean value of the weights, and hence we focus on the study of

generalized mean-payoff and energy games with finite-memory strategies.

Second, we show that under the hypothesis that both players play either finite-memory or

memoryless strategies, the generalized mean-payoff game and the generalized energy game

problems are equivalent.

Third, our main contribution is the study of the computational complexity of the decision

problems for generalized mean-payoff games and generalized energy games, both for finite-

memory strategies and the special case of memoryless strategies. Our complexity results

can be summarized as follows: (A) For finite-memory strategies, we provide a nondetermin-

istic polynomial time algorithm for deciding negative instances of the problems1. Thus we

show that the decision problems are in coNP. This significantly improves the complexity as

compared to the EXPSPACE algorithm that can be obtained by reduction to Vass (vector

addition systems with states) [4]. Furthermore, we establish a coNP lower bound for these

problems by reduction from the complement of the 3SAT problem, hence showing that the

problem is coNP-complete. (B) For the case of memoryless strategies, as the games are not

determined, we consider the problem of determining if Player 1 has a memoryless winning

1 Negative instances are those where Player 1 is losing, and by determinacy under finite-memory where
Player 2 is winning.
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strategy. First, we show that the problem of determining if Player 1 has a memoryless

winning strategy is in NP, and then show that the problem is NP-hard (i) even when the

weights are restricted to {−1, 0, 1}; or (ii) when the weights are arbitrary and the dimension

is 2.

Related works. Mean-payoff games, which are the one-dimension version of our generalized

mean-payoff games, have been extensively studied starting with the works of Ehrenfeucht

and Mycielski in [11] where they prove memoryless determinacy for these games. Because of

memoryless determinacy, it is easy to show that the decision problem for mean-payoff games

lies in NP ∩ coNP, but despite large research efforts, no polynomial time algorithm is known

for that problem. A pseudo-polynomial time algorithm has been proposed by Zwick and

Paterson in [20], and improved in [5]. The one-dimension special case of generalized energy

games have been introduced in [6] and further studied in [3] where log-space equivalence

with classical mean-payoff games is established.

Generalized energy games can be viewed as games played on Vass (vector addition

systems with states) where the objective is to avoid unbounded decreasing of the counters.

A solution to such games on Vass is provided in [4] (see in particular Lemma 3.4 in [4]) with

a PSPACE algorithm when the weights are {−1, 0, 1}, leading to an EXPSPACE algorithm

when the weights are arbitrary integers. We drastically improve the EXPSPACE upper-

bound by providing a coNP algorithm for the problem, and we also provide a coNP lower

bound even when the weights are restricted to {−1, 0, 1}.

2 Generalized Mean-payoff and Energy Games

Well quasi-orders. Let D be a set. A relation � over D is a well quasi-order, wqo for

short, if the following holds: (a) � is transitive and reflexive; and (b) for all f : N → D,

there exists i1, i2 ∈ N such that i1 < i2 and f(i1) � f(i2).

◮ Lemma 1. (Nk,≤) is well quasi-ordered.

Multi-weigthed two-player game structures. A multi-weigthed two-player game struc-

ture is a tuple G = (S1, S2, sinit, E, k, w) where S1 ∩S2 = ∅, and Si (i = 1, 2) is the finite set

of Player i positions, sinit ∈ S1 is the initial position, E ⊆ (S1 ∪ S2)× (S1 ∪ S2) is the set of

edges such that for all s ∈ S1 ∪ S2, there exists s′ ∈ S1 ∪ S2 such that (s, s′) ∈ E, k ∈ N is

the dimension of the multi-weights, w : E → Z
k is the multi-weight labeling function. G is

a multi-weighted one-player game structure if S2 = ∅.

A play in G is an infinite sequence of π = s0s1 . . . sn . . . such that (i) s0 = sinit, (ii) for

all i ≥ 0 we have (si, si+1) ∈ E. A play π = s0s1 . . . sn . . . is ultimately periodic if it can

be decomposed as π = ρ1 · ρω2 where ρ1 and ρ2 are two finite sequences of positions. The

prefix up to position n of a play π = s0s1 . . . sn . . . is the finite sequence π(n) = s0s1 . . . sn,

its last element sn is denoted by Last(π(n)). A prefix π(n) belongs to Player i (i ∈ {1, 2})

if Last(π(n)) ∈ Si. The set of plays in G is denoted by Plays(G), the corresponding set of

prefixes is denoted by Prefs(G), the set of prefixes that belongs to Player i (i ∈ {1, 2}) is

denoted by Prefsi(G), and the set of ultimately periodic plays in G is denoted by Playsup(G).

The energy level vector of a prefix of play ρ = s0s1 . . . sn is EL(ρ) =
∑i=n−1
i=0 w(si, si+1),

and the mean-payoff vector of an ultimately periodic play π = s0s1 . . . sn . . . is MP(π) =

limn→∞
1
n

EL(π(n)).

Strategies. A strategy for Player i (i ∈ {1, 2}) in G is a function λi : Prefsi(G)→ S1 ∪ S2

such that for all ρ ∈ Prefsi(G) we have (Last(ρ), λi(ρ)) ∈ E. A play π = s0s1 · · · ∈ Plays(G)

is consistent with a strategy λi of Player i if sj+1 = λi(s0s1 . . . sj) for all j ≥ 0 such that
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sj ∈ Si. The outcome of a pair of strategies, λ1 for Player 1 and λ2 for Player 2, is the

(unique) play which is consistent with both λ1 and λ2. We denote outcomeG(λ1, λ2) this

outcome.

A strategy λ1 for Player 1 has finite-memory if it can be encoded by a deterministic Moore

machine (M,m0, αu, αn) where M is a finite set of states (the memory of the strategy),

m0 ∈ M is the initial memory state, αu : M × (S1 ∪ S2) → M is an update function, and

αn : M × Si → S1 ∪ S2 is the next-action function. If the game is in a Player-1 position

s ∈ S1 and m ∈ M is the current memory value, then the strategy chooses s′ = αn(m, s)

as the next position and the memory is updated to αu(m, s). Formally, 〈M,m0, αu, αn〉

defines the strategy λ such that λ(ρ · s) = αn(α̂u(m0, ρ), s) for all ρ ∈ (S1 ∪S2)∗ and s ∈ S1,

where α̂u extends αu to sequences of positions as expected. A strategy is memoryless if

|M | = 1. For a finite-memory strategy λ1 of Player 1, let Gλ1
be the graph obtained as the

product of G with the Moore machine defining λ1, with initial vertex 〈m0, sinit〉 and where

(〈m, s〉, 〈m′, s′〉) is a transition in Gλ1
if m′ = αu(m, s), and either s ∈ S1 and s′ = αn(m, s),

or s ∈ S2 and (s, s′) ∈ E. The set of inifinite paths in Gλ1
and the set of plays consistent

with λ1 coincide. A similar definition can be given for the case of Player 2.

Objectives. An objective for Player 1 in G is a set of plays W ⊆ Plays(G). A strategy λ1

for Player 1 is winning for W in G if for all plays in π ∈ Plays(G) that are consistent with

λ1, we have that π ∈ W . A strategy λ2 for Player 2 is spoiling for W in G if for all plays in

π ∈ Plays(G) that are consistent with λ2, we have that π 6∈ W . We consider the following

objectives:

Multi Energy objectives. Given an initial energy vector v0 ∈ N
k, the multi energy objective

PosEnergyG(v0) = {π ∈ Plays(G) | ∀n ≥ 0 : v0 + EL(π(n)) ∈ N
k} requires that the energy

level in all dimensions remains always nonnegative.

Multi Mean-payoff objectives. Given a threshold vector v ∈ Z
k, the multi mean-payoff

objective MeanPayoffG(v) = {π ∈ Playsup(G) | MP(π) ≥ v} requires for all dimensions j

the mean-payoff for dimension j is at least v(j).

Decision problems. We consider the following decision problems:

The unknown initial credit problem asks, given an multi-weighted two-player game struc-

ture G, to decide whether there exists an initial credit vector v0 ∈ N
k and a winning

strategy λ1 for Player 1 for the objective PosEnergyG(v0).

The mean-payoff threshold problem (for finite memory) asks, given an multi-weighted

two-player game structure G and a threshold vector v ∈ Z
k, to decide whether there

exists a finite-memory strategy λ1 for Player 1 such that for all finite-memory strategies

λ2 of Player 2, outcomeG(λ1, λ2) ∈ MeanPayoffG(v).

Note that in the unknown initial credit problem, we allow arbitrary strategies (and we

show in Theorem 5 that actually finite-memory strategies are sufficient), while in the mean-

payoff threshold problem, we require finite-memory strategy which is restriction (according

to Theorem 8) of a more general problem of deciding the existence of arbitrary winning

strategies.

Determinacy and determinacy under finite-memory. A game G with an objective W

is determined if either Player 1 has a winning strategy, or Player 2 has a spoiling strategy.

A game G with an objective W is determined under finite-memory if either (a) Player 1

has a finite-memory strategy λ1 such that for all finite-memory strategies λ2 of Player 2,

we have outcomeG(λ1, λ2) ∈ W ; or (b) Player 2 has a finite-memory strategy λ2 such that

for all finite-memory strategies λ1 of Player 1, we have outcomeG(λ1, λ2) 6∈W . Games with
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objectives W are determined (resp. determined under finite-memory) if all game structures

with objectives W are determined (resp. determined under finite-memory). We say that

determinacy and determined under finite-memory coincide for a class of objectives, if for all

objectives in the class and all game structures, the answer of the determinacy and determined

under finite-memory coincide (i.e., Player 1 has a winning strategy iff there is a finite-memory

winning strategy, and similarly for Player 2). Generalized mean-payoff and energy objectives

are measurable: (a) generalized mean-payoff objectives can be expressed as finite intersection

of mean-payoff objectives and mean-payoff objectives are complete for the third level of Borel

hierarchy [7]; and (b) generalized energy objectives can be expressed as finite intersection

of energy objectives, and enery objectives are closed sets. Hence determinacy of generalized

mean-payoff and energy games follows from the result of [15].

◮ Theorem 2 (Determinacy [15]). Generalized mean-payoff and energy games are deter-

mined.

3 Determinacy under Finite-memory and Inter-reducibility

In this section, we establish four results. First, we show that to win generalized energy

games, it is sufficient for Player 1 to play finite-memory strategies. Second, we show that to

spoil generalized energy games, it is sufficient for Player 2 to play memoryless strategies. As

a consequence, generalized energy games are determined under finite-memory. Third, using

this finite-memory determinacy result, we show that the decision problems for generalized

energy and mean-payoff games (see Section 2) are log-space inter-reducible. Finally, we

show that infinite-memory strategies are more powerful than finite-memory strategies in

generalized mean-payoff games.

For generalized energy games, we first show that finite-memory strategies are sufficient

for Player 1, and then that memoryless strategies are sufficient for Player 2.

◮ Lemma 3. For all multi-weighted two-player game structures G, the answer to the

unknown initial credit problem is Yes iff there exists a initial credit v0 ∈ N
k and a

finite-memory strategy λFM
1 for Player 1 such that for all strategies λ2 of Player 2,

outcomeG(λFM
1 , λ2) ∈ PosEnergyG(v0).

Proof. One direction is trivial. For the other direction, assume that λ1 is a (not necessary

finite-memory) winning strategy for Player 1 in G with initial credit v0 ∈ N
k. We show how

to construct from λ1 a finite-memory strategy λFM
1 which is winning against all strategies

of Player 2 for initial credit v0. For that we consider the unfolding of the game graph G in

which Player 1 plays according to λ1. This infinite tree, noted TG(λ1), has as set of nodes

all the prefixes of plays in G when Player 1 plays according to λ1. We associate to each

node ρ = s0s1 . . . sn in this tree the energy vector v0 + EL(ρ). As λ1 is winning, we have

that v0 + EL(ρ) ∈ N
k for all ρ. Now, consider the set (S1 ∪ S2)×N

k, and the relation ⊑ on

this set defined as follows: (s1, v1) ⊑ (s2, v2) iff s1 = s2 and v1 ≤ v2 i.e., for all i, 1 ≤ i ≤ k,

v1(i) ≤ v2(i). The relation ⊑ is a wqo (easy consequence of Lemma 1). As a consequence,

on every infinite branch π = s0s1 . . . sn . . . of TG(λ1), there exists two positions i < j such

that Last(π(i)) = Last(π(j)) and EL(π(i)) ≤ EL(π(j)). We say that node j subsumes node

i. Now, let T FM

G(λ1) be the tree TG(λ1) where we stop each branch when we reach a node n2

which subsumes one of its ancestor node n1. Clearly, T FM

G(λ1) is finite. Also, it is easy to see

that Player 1 can play in the subtree rooted at n2 as she plays in the subtree rooted in n1

because its energy level in n2 is greater than in n1. From T FM

G(λ1), we can construct a Moore
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q0q1 q2

(0, 0)

(0, 0)

(−1, 1)

(1,−1)

(−2, 0)

Figure 1 Player 1 (round states) wins with initial credit (2, 0) when Player 2 (square states) can

use memoryless strategies, but not when Player 2 can use arbitrary strategies.

machine which encode a finite-memory strategy λFM
1 which is winning the generalized energy

game G as it is winning for initial energy level v0. �

◮ Lemma 4. [4] For all multi-weigthed two-player game structures G, the answer to the

unknown initial credit problem is No if and only if there exists a memoryless strategy λ2 for

Player 2, such that for all initial credit vectors v0 ∈ N
k and all strategies λ1 for Player 1 we

have outcomeG(λ1, λ2) 6∈ PosEnergyG(v0).

As a consequence of the two previous lemmas, we have the following theorem.

◮ Theorem 5. Generalized energy games are determined under finite-memory, and deter-

minacy coincide with determinacy under finite-memory for generalized energy games.

◮ Remark. Note that even if Player 2 can be restricted to play memoryless strategies in

generalized energy games, it may be that Player 1 is winning with some initial credit vector

v0 when Player 2 is memoryless, and is not winning with the same initial credit vector v0

when Player 2 can use arbitrary strategies. This situation is illustrated in Figure 1 where

Player 1 (owning round states) can maintain the energy nonegative in all dimensions with

initial credit (2, 0) when Player 2 (owning square states) is memoryless. Indeed, either

Player 2 chooses the left edge from q0 to q1 and Player 1 wins, or Player 2 chooses the right

edge from q0 to q2, and Player 1 wins as well by alternating the edges back to q0. Now, if

Player 2 has memory, then Player 2 wins by choosing first the right edge to q2, which forces

Player 1 to come back to q0 with multi-weight (−1, 1). The energy level is now (1, 1) in q0

and Player 2 chooses the left edge to q1 which is losing for Player 1. Note that Player 1

wins with initial credit (2, 1) and (3, 0) (or any larger credit) against all arbitrary strategies

of Player 2.

We now show that generalized mean-payoff games (where players are restricted to play

finite-memory strategies by definition) are log-space equivalent to generalized energy games.

First note that the mean-payoff threshold problem with threshold vector v ∈ Z
k can be

reduced to the mean-payoff threshold problem with threshold vector {0}k, by shifting all

multi-weights in the game graph by v (which has the effect of shifting the mean-payoff

value by v). Given this reduction, the following result shows that the unknown initial

credit problem (for multi-energy games) and the mean-payoff threshold problem (with finite-

memory strategies) are equivalent.

◮ Theorem 6. For all multi-weigthed two-player game structures G with dimension k, the

answer to the unknown initial credit problem is Yes if and only if the answer to the mean-

payoff threshold problem (for finite memory) with threshold vector {0}k is Yes.
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Proof. First, assume that there exists a winning strategy λ1 for Player 1 in G for the multi

energy objective PosEnergyG(v0) (for some v0). Theorem 5 establishes that finite memory is

sufficient to win multi-energy games, so we can assume that λ1 has finite memory. Consider

the restriction of the graph Gλ1
to the reachable vertices, and we show that the energy

vector of every simple cycle is nonnegative. By contradcition, if there exists a simple cycle

with energy vector negative in one dimension, then the infinite path that reaches this cycle

and loops through it forever would violate the objective PosEnergyG(v0) regardless of the

vector v0.

Now, this shows that every reachable cycle in Gλ1
has nonnegative mean-payoff value in

all dimensions, hence λ1 is winning for the multi mean-payoff objective MeanPayoffG({0}k).

Second, assume that there exists a finite-memory strategy λ1 for Player 1 that is winning

in G for the multi mean-payoff objective MeanPayoffG({0}k). By the same argument as

above, all simple cycles in Gλ1
are nonnegative and the strategy λ1 is also winning for the

objective PosEnergyG(v0) for some v0. Taking v0 = {nW}k where n is the number of states

in Gλ1
(which bounds the length of the acyclic paths) and W ∈ Z is the largest weight in

the game suffices. �

Note that the result of Theorem 6 does not hold for arbitrary strategies as shown in the

following lemma.

◮ Lemma 7. In generalized mean-payoff games, infinite memory may be necessary to win

(finite-memory strategies may not be sufficient).

Proof. To show this, we first need to define the mean-payoff vector of arbitrary plays (be-

cause arbitrary strategies, i.e., infinite-memory strategies, may produce non-ultimately pe-

riodic plays). In particular, the limit of 1
n
· EL(π(n)) for n → ∞ may not exist for ar-

bitrary plays π. Therefore, two possible definitions are usually considered, namely either

MP(π) = lim infn→∞
1
n
· EL(π(n)), or MP(π) = lim supn→∞

1
n
· EL(π(n)). In both cases,

better payoff can be obtained with infinite memory: the example of Figure 2 shows a game

where all states belong to Player 1. We claim that (a) for MP, Player 1 can achieve a

threshold vector (1, 1), and (b) for MP, Player 1 can achieve a threshold vector (2, 2); (c) if

we restrict Player 1 to use a finite-memory strategy, then it is not possible to win the multi

mean-payoff objective with threshold (1, 1) (and thus also not with (2, 2)). To prove (a),

consider the strategy that visits n times qa and then n times qb, and repeats this forever

with increasing value of n. This guarantees a mean-payoff vector (1, 1) for MP because in

the long-run roughly half of the time is spent in qa and roughly half of the time in qb. To

prove (b), consider the strategy that alternates visits to qa and qb such that after the nth

alternation, the self-loop on the visited state q (q ∈ {qa, qb}) is taken so many times that

the average frequency of q gets larger than 1
n

in the current finite prefix of the play. This

is always possible and achieves threshold (2, 2) for MP. Note that the above two strategies

require infinite memory. To prove (c), notice that finite-memory strategies produce an ul-

timately periodic play and therefore MP and MP coincide with MP. It is easy to see that

such a play cannot achieve (1, 1) because the periodic part would have to visit both qa and

qb and then the mean-payoff vector (v1, v2) of the play would be such that v1 + v2 < 2 and

thus v1 = v2 = 1 is impossible. �

Theorem 6 and Lemma 7, along with Theorem 5 gives the following result.

◮ Theorem 8. Generalized mean-payoff games are determined under finite-memory, however

determinacy and determined under finite-memory do not coincide for generalized mean-

payoff games.
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qa qb

(2, 0) (0, 2)

(0, 0)

(0, 0)

Figure 2 A generalized mean-payoff game where infinite memory is necessary to win (Lemma 7).

4 coNP-completeness for Finite-Memory Strategies

In this section, we present a nondeterministic polynomial time algorithm to recognize the

instances for which there is no winning strategies for Player 1 in a multi-energy game. First,

we show that the one-player version of this game can be solved by checking the existence of a

circuit (i.e., a not necessarily simple cycle) with overall nonnegative effect in all dimensions.

Second, we build on this and the memoryless result for Player 2 to define a coNP algorithm.

The main result (Theorem 9) is derived from Lemma 11 and Lemma 12 below.

◮ Theorem 9. The unknown initial credit and the mean-payoff threshold problems for multi-

weighted two-player game structures are coNP-complete.

coNP upper bound. First, we need the following result about finding zero circuits in multi-

weighted directed graphs (a graph is a one-player game). A zero circuit is a finite sequence

s0s1 . . . sn such that s0 = sn, (si, si+1) ∈ E for all 0 ≤ i < n, and
∑n−1
i=0 w(si, si+1) =

(0, 0, . . . , 0). The circuit need not be simple.

◮ Lemma 10 ([14]). Determining if a k-dimensional directed graph contains a zero circuit

can be done in polynomial time.

◮ Lemma 11. The unknown initial credit and the mean-payoff threshold problems for multi-

weighted two-player game structures are in coNP.

Proof. By Lemma 4, we know that Player 2 can be restricted to play memoryless strategies.

A coNP algorithm can guess a memoryless strategy λ and check in polynomial time that it

is winning using the following argument.

First, consider the graph Gλ as a one-player game (in which all states belong to player 1.

We show that if there exists an initial energy level v0 and an infinite play π = s0s1 . . . sn . . .

in Gλ such that π ∈ PosEnergy(v0) then there exist a reachable circuit in Gλ that has

nonnegative effect in all dimensions. To show that, we extend π with the energy information

as follows: π′ = (s0, w0)(s1, w1) . . . (sn, wn) . . . where w0 = v0 and for all i ≥ 1, wi =

v0 + EL(π(i)). As π ∈ PosEnergy(v0), we know that for all i ≥ 0, wi ∈ N
k. So, we can define

the following order on the pairs (s, w) ∈ (S1 ∪S2)×N
k in the run: (s, w) ⊑ (s′, w′) iff s = s′

and w(j) ≤ w′(j) for all 1 ≤ j ≤ k. From Lemma 1, it is easy to show that ⊑ is a wqo.

Then there exist two positions i1 < i2 in π′ such that (si1 , wi1 ) ⊑ (si2 , wi2 ). The circuit

underlying those two positions has nonnegative effect in all dimensions.

Based on this, we can decide if there exists an initial energy vector v0 and an infinite path

in Gλ that satisfies PosEnergyG(v0) using the result of Lemma 10 on modified version of Gλ
obtained as follows. In every state of Gλ, we add k self-loops with respective multi-weight

(−1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . , (0, . . . , 0,−1), i.e. each self-loop removes one unit of
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C1

C2

Ck

...

}

}

}

literal

literal

literal

Figure 3 Game graph construction for a 3SAT formula (Lemma 12).

energy in one dimension. It is easy to see that Gλ has a circuit with nonnegative effect in

all dimensions if and only if the modified Gλ has a zero circuit, which can be determined in

polynomial time. The result follows. �

Lower bound: coNP-hardness. We show that the unknown initial credit problem for

multi-weighted two-player game structures is coNP-hard. We present a reduction from the

complement of the 3SAT problem which is NP-complete [16].

Hardness proof. We show that the problem of deciding whether Player 1 has a winning

strategy for the unknown initial credit problem for multi-weighted two-player game struc-

tures is at least as hard as deciding whether a 3SAT formula is unsatisfiable. Consider a

3SAT formula ψ in CNF with clauses C1, C2, . . . , Ck over variables {x1, x2, . . . , xn}, where

each clause consists of disjunctions of exactly three literals (a literal is a variable or its

complement). Given the formula ψ, we construct a game graph as shown in Figure 3. The

game graph is as follows: from the initial position, Player 1 chooses a clause, then from

a clause Player 2 chooses a literal that appears in the clause (i.e., makes the clause true).

From every literal the next position is the initial position. We now describe the multi-weight

labeling function w. In the multi-weight function there is a component for every literal. For

edges from the initial position to the clause positions, and from the clause positions to the

literals, the weight for every component is 0. We now define the weight function for the

edges from literals back to the initial position: for a literal y, and the edge from y to the

initial position, the weight for the component of y is 1, the weight for the component of the

complement of y is −1, and for all the other components the weight is 0. We now define

a few notations related to assignments of truth values to literals. We consider assignments

that assign truth values to all the literals. An assignment is valid if for every literal the truth

value assigned to the literal and its complement are complementary (i.e., for all 1 ≤ i ≤ n,

if xi is assigned true (resp. false), then the complement xi of xi is assigned false (resp.

true)). An assignment that is not valid is conflicting (i.e., for some 1 ≤ i ≤ n, both xi
and xi are assigned the same truth value). If the formula ψ is satisfiable, then there is a

valid assignment that satisfies all the clauses. If the formula ψ is not satisfiable, then every

assignment that satisfies all the clauses must be conflicting. We now present two directions

of the hardness proof.

ψ satisfiable implies Player 2 winning. We show that if ψ is satisfiable, then Player 2 has

a memoryless winning strategy. Since ψ is satisfiable, there is a valid assignment A that

satisfies every clause. The memoryless strategy is constructed from the assignment A as

follows: for a clause Ci, the strategy chooses a literal as successor that appears in Ci and is

set to true by the assignment. Consider an arbitrary strategy for Player 1, and the infinite
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play: the literals visited in the play are all assigned truth values true by A, and the infinite

play must visit some literal infinitely often. Consider the literal x that appears infinitely

often in the play, then the complement literal x is never visited, and every time literal x

is visited, the component corresponding to x decreases by 1, and since x appears infinitely

often it follows that the play is winning for Player 2 for every finite initial credit. It follows

that the strategy for Player 2 is winning, and the answer to the unknown initial credit

problem is “No".

ψ not satisfiable implies Player 1 is winning. We now show that if ψ is not satisfiable, then

Player 1 is winning. By determinacy, it suffices to show that Player 2 is not winning, and

by existence of memoryless winning strategy for Player 2 (Lemma 4), it suffices to show

that there is no memoryless winning strategy for Player 2. Fix an arbitrary memoryless

strategy for Player 2, (i.e., in every clause Player 2 chooses a literal that appears in the

clause). If we consider the assignment A obtained from the memoryless strategy, then since

ψ is not satisfiable it follows that the assignment A is conflicting. Hence there must exist

clause Ci and Cj and variable xk such that the strategy chooses the literal xk in Ci and

the complement variable xk in Cj . The strategy for Player 1 that at the starting position

alternates between clause Ci and Cj , along with that the initial credit of 1 for the component

of xk and xk, and 0 for all other components, ensures that the strategy for Player 2 is not

winning. Hence the answer to the unknown initial credit problem is “Yes", and we have the

following result.

◮ Lemma 12. The unknown initial credit and the mean-payoff threshold problems for multi-

weighted two-player game structures are coNP-hard.

Observe that our hardness proof works with weights restricted to the set {−1, 0, 1}.

5 NP-completeness for Memoryless Strategies

In this section we consider the unknown initial credit and the mean-payoff threshold problems

for multi-weighted two-player game structures when Player 1 is restricted to use memoryless

strategies. We will show NP-completeness for these problems.

◮ Lemma 13. The unknown intial credit and the mean-payoff threshold problems for multi-

weighted two-player game structures for memoryless strategies for Player 1 lie in NP.

Proof. The inclusion in NP is obtained as follows: the polynomial witness is the memoryless

strategy for Player 1, and once the strategy is fixed we obtain a game graph with choices for

Player 2 only. The verification problem for the unknown initial credit checks that for every

dimension there is no negative cycle, and the verification problem for mean-payoff threshold

checks that for every dimension every cycle satisfy the threshold condition. Both the above

verification problem can be achieved in polynomial time by solving the energy-game and

mean-payoff game problem on graphs with choices for Player 2 only [13, 3, 6]. The desired

result follows. �

Lemma 14 shows NP-hardness for dimension k = 2 and arbitrary integral weights, and

is obtained by a reduction from the Knapsack problem. If k = 1, then the problems

reduces to the classical energy and mean-payoff games, and is in NP ∩ coNP [3, 6, 20] (so

the hardness result cannot be obtained for k = 1).

◮ Lemma 14. The unknown intial credit and the mean-payoff threshold problems for multi-

weighted two-player game structures for memoryless strategies for Player 1 are NP-hard,

even in one-player game structures with dimension k = 2 for the weight function.
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In Lemma 15 we show the hardness of the problem when the weights are in {−1, 0, 1},

but the dimension is arbitrary. It has been shown in [12] that if the weights are {−1, 0, 1}

and the dimension is 2, then the problem can be solved in polynomial time.

◮ Lemma 15. The unknown intial credit and the mean-payoff threshold problems for multi-

weighted two-player game structures for memoryless strategies for Player 1 are NP-hard,

even in one-player game structures when weights are restricted to {−1, 0, 1}.

Proof. We present a reduction from the 3SAT problem. Consider a 3SAT formula Φ over

a set X = {x1, x2, . . . , xn} of variables, and a set C1, C2, . . . , Cm of clauses such that each

clause has 3-literals (a literal is a variable or its complement). We construct a one-player

game structure with a weight function of dimension m from Φ. The set of positions is

S1 = X ∪ {(xi, j) | xi ∈ X, j ∈ {T, F}} ∪ {xn+1} and S2 = ∅. The set of edges is as

follows: E = {(xi, (xi, T )), (xi, (xi, F )) | xi ∈ X} ∪ {((xi, T ), xi+1), ((xi, F ), xi+1) | xi ∈

X}∪{(xn+1, x1)}. Intuitively, in the game structure, for every variable Player 1 has a choice

to set xi as “True" (edge from xi to (xi, T )), and choice to set xi as “False" (edge from

xi to (xi, F )). From (xi, T ) and (xi, F ) the next position is xi+1, and from the position

xn+1 the next position is x1. The weight function w : E → Z
m has m dimensions: (a) for

an edge e = (xi, (xi, T )) (resp. e = (xi, (xi, F ))) and 1 ≤ k ≤ m, the k-th component of

w(e) is 1 if the choice xi as “True" (resp. “False") satisfies clause Ck, and otherwise the

k-th component is 0; (b) for edges e = ((xi, j), xi+1), with j ∈ {T, F}, every component of

w(e) is 0; and (c) for the edge e = (xn+1, x1), for all 1 ≤ k ≤ m, the k-th component of

w(e) = −1. If Φ is satisfiable, then consider a satisfying assignment A, and we construct a

memoryless strategy λ1 as follows: for a position xi, if A(xi) is “True", then choose (xi, T ),

otherwise choose (xi, F ). The memoryless strategy λ1 with initial credit vector {0}m ensures

that the answer to the unknown initial credit problem for memoryless strategies is “Yes".

Conversely, if there is a memoryless strategy λ1 for the unknown initial credit problem,

then the memoryless strategy must satisfy every clause. A satisfying assignment A for Φ

is as follows: A(xi) is “True" if λ1(xi) = (xi, T ), and “False", otherwise. It follows that Φ

is satisfiable iff the answer to the unknown initial credit problem for memoryless strategies

is “Yes". The argument for the mean-payoff threshold problem is analogous. The desired

result follows. �

The following theorem follows from the results of Lemma 13, Lemma 14 and Lemma 15.

◮ Theorem 16. The unknown initial credit and the mean-payoff threshold problems for

multi-weighted two-player game structures for memoryless strategies for Player 1 are NP-

complete.

6 Conclusion

In this work we considered games with multiple mean-payoff and energy objectives, and

established determinacy under finite-memory, inter-reducibility of these two classes of games

for finite-memory strategies, and improved the complexity bounds from EXPSPACE to

coNP-complete.

Two interesting problems are open: (A) for generalized mean-payoff games, the winning

strategies with infinite memory are more powerful than finite-memory strategies, and the

complexity of solving generalized mean-payoff games with infinite-memory strategies remains

open. (B) it is not knwon how to compute the exact or approximate Pareto curve (trade-off

curve) for multi-objective mean-payoff and energy games.
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