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Abstract. We consider multi-player graph games with partial-obs#owaand
parity objective. While the decision problem for threeyg@agames with a coali-
tion of the first and second players against the third playentdecidable in gen-
eral, we present a decidability result for partial-obsgoregames where the first
and third player are in a coalition against the second pldlias where the sec-
ond player is adversarial but weaker due to partial-obsierva/Ne establish tight
complexity bounds in the case where playeis less informed than playet,
namely 2-EXPTIME-completeness for parity objectives. Simmetric case of
player1 more informed than playe2 is much more complicated, and we show
that already in the case where playehas perfect observation, memory of size
non-elementary is necessary in general for reachabiligatibes, and the prob-
lem is decidable for safety and reachability objectivesnfrour results we derive
new complexity results for partial-observation stoclagiimes.

1 Introduction

Games on graphsGames played on graphs are central in several importanigonsin
computer science, such as reactive synthesis [21, 22ficatidn of open systems [2],
and many others. The game is played by several players onte$iaite graph, with a
set of angelic (existential) players and a set of demoniwéusal) players as follows:
the game starts at an initial state, and given the curret#, stee successor state is de-
termined by the choice of moves of the players. The outcontaefjame is alay,
which is an infinite sequence of states in the graphbtrAtegyis a transducer to resolve
choices in a game for a player that given a finite prefix of they @pecifies the next
move. Given an objective (the desired set of behaviors grsplahe goal of the exis-
tential players is to ensure the play belongs to the objeatrespective of the strategies
of the universal players. In verification and control of gcsystems an objective is
typically anw-regular set of paths. The classwiregular languages, that extends clas-
sical regular languages to infinite strings, provides a sblspecification language to
express all commonly used specifications, and parity algEscare a canonical way to
define suchu-regular specifications [27]. Thus games on graphs withtyahjectives
provide a general framework for analysis of reactive system
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Perfect vs partial observation.Many results about games on graphs make the hypoth-
esis ofperfect observatiofi.e., players have perfect or complete observation albaut t
state of the game). In this setting, due to determinacy (dckimg of the strategy quan-
tifiers for existential and universal players) [17], the sfiens expressed by an arbitrary
alternation of quantifiers reduce to a single alternation,thus are equivalent to solv-
ing two-player games (all the existential players agailh¢iha universal players). How-
ever, the assumption of perfect observation is often ndistean practice. For example
in the control of physical systems, digital sensors withtéimirecision provide partial
information to the controller about the system state [12, $#nilarly, in a concurrent
system the modules expose partial interfaces and havesaoct®e public variables of
the other processes, but not to their private variablesAR%5uch situations are better
modeled in the more general frameworlqairtial-observatiorgames [24-26].

Partial-observation games.Since partial-observation games are not determined, un-
like the perfect-observation setting, the multi-playemnggroblems do not reduce to the
case of two-player games. Typically, multi-player parthkervation games are stud-
ied in the following setting: a set of partial-observatiotisgential players, against a
perfect-observation universal player, such as for distetd synthesis [21, 13, 23]. The
problem of deciding if the existential players can ensureaghability (or a safety) ob-
jective is undecidable in general, even for two existenialers [20, 21]. However, if
the information of the existential players form a chain.(iexistential player 1 more
informed than existential player 2, existential player renmformed than existential
player 3, and so on), then the problem is decidable [21, 16, 18

Games with a weak adversaryOne aspect of multi-player games that has been largely
ignored is the presence of weaker universal players thabtloave perfect observation.
However, it is natural in the analysis of composite reactiygems that some universal
players represent components that do not have access trialbles of the system. In
this work we consider games where adversarial players cem artial observation.
If there are two existential (resp., two universal) playwith incomparable partial ob-
servation, then the undecidability results follows from,[21]; and if the information
of the existential (resp., universal) players form a ch#ien they can be reduced to
one partial-observation existential (resp., universky@r. We consider the following
case of partial-observation games: one partial-obsemvatiistential player (player 1),
one partial-observation universal player (player 2), oedgzt-observation existential
player (player 3), and one perfect-observation univeisgigy (player 4). Roughly, hav-
ing more partial-observation players in general leads tteaidability, and having more
perfect-observation players reduces to two perfect-olsien players. We first present
our results and then discuss two applications of the model.

Results.Our main results are as follows:

1. Player 1 less informediVe first consider the case when player 1 is less informed
than player 2. We establish the following results: a 2-EXPTIME upper bound
for parity objectives and a 2-EXPTIME lower bound for reduitity objectives
(i.e., we establish 2-EXPTIME-completenegs)) an EXPSPACE upper bound for
parity objectives when player 1 is blind (has only one obaton), and EXPSPACE
lower bound for reachability objectives even when both etaly and player 2 are



Reachability Parity Parity

Player2|Finite- or infinite-memory strategiesdnfinite-memory strategieg Finite-memory strategies
Playerl Perfect More informed Perfect |More informed Perfect [More informed
Randomized EXP-c [9] EXP-c [4] Undec. [3, 8] Undec. [3, 8] |[EXP-c [10]| 2EXP
Pure EXP-c [7] 2EXP-c Undec. [3]| Undec. [3] |[EXP-c[10] 2EXP-c

Table 1.Complexity of qualitative analysis (almost-sure winnifgy)partial-observation stochas-
tic games with partial observation for player 1 with readligiand parity objectives. Player 2 has
either perfect observation or more information than playeew results boldfaced). For positive
winning, all entries other than the first (randomized st for player 1 and perfect observa-
tion for player 2) remain the same, and the complexity forfitst entry for positive winning is
PTIME-complete.

blind. In all these cases, if the objective can be ensurenl tive upper bound on
memory requirement of winning strategies is at most doukoeential.

2. Player 1 more informedMe consider the case when player 1 can be more informed

as compared to player 2, and show that even when player 1 hiestpebserva-
tion there is a non-elementary lower bound on the memoryiredy winning
strategies. This result is also in sharp contrast withiisted games, where if only
one player has partial observation then the upper bound enameof winning
strategies is exponential.

Applications. We discuss two applications of our results: the sequentighsis prob-
lem, and new complexity results for partial-observastochastigames.

1. The sequential synthesis problem consists of a set aafaimplemented mod-
ules, where first a set of modules needs to be refined, folldweadrefinement of
some modules by an external source, and then the remainidglesare refined so
that the composite open reactive system satisfies a spéoific&iven the first two
refinements cannot access all private variables, we havergfayer game where
the first refinement corresponds to player 1, the second reéintto player 2, the
third refinement to player 3, and player 4 is the environment.

2. In partial-observation stochastic games, there are @vtgb-observation players
(one existential and one universal) playing in the presehaacertainty in the tran-
sition function (i.e., stochastic transition functionhd qualitative analysis ques-
tion is to decide the existence of a strategy for the exigtbplayer to ensure the
parity objective with probability 1 (or with positive probgity) against all strate-
gies of the universal player. The witness strategy can beoraized or determin-
istic (pure). While the qualitative problem is undecidalttee practically relevant
restriction to finite-memory pure strategies reduces tddbe-player game prob-
lem. Moreover, for finite-memory strategies, the decisiowbfem for randomized
strategies reduces to the pure-strategy question [7]. Bydhults we establish in
this paper, new decidability and complexity results araigd for the qualitative
analysis of partial-observation stochastic games withgrlapartially informed but
more informed than player. The complexity results for almost-sure winning are
summarized in Table 1. Surprisingly for reachability olijezs, whether player 2 is
perfectly informed or more informed than player 1 does naingfe the complexity



for randomized strategies, but it results in an exponeimiakase in the complexity
for pure strategies.

2 Definitions

We first consider three-player (non-stochastic) games péitity objectives and we
establish new complexity results in Section 3 that we latézred to four-player games
in Section 5. We also present the related model of two-playechastic games for
which our contribution implies new complexity results.

Three-player gamessiven alphabets!; of actions for playet (i = 1,2, 3), athree-
player games a tupleG = (Q, qo, 9) where:
— @ is afinite set of states witly) € @ the initial state; and
—0:0Q x A1 x Ay x A3 — (@ is a deterministic transition function that, given a
current statey, and actions; € Aj, as € As, az € As of the players, gives the
successor statg = d(q, a1, as, as).
The games we consider are sometimes caltetturrentbecause all three players need
to choose simultaneously an action to determine a succetser The special class
of turn-basedgames corresponds to the case where in every state, one pkgy/the
turn and his sole action determines the successor stater fnaonework, a turn-based
state for played is a statey € @ such that(q, a1, a2, as) = (g, a1, ah, a}) for all
a1 € Ay, ag,ah € Ag, andag,ay € As. We define analogously turn-based states for
player2 and playeB. A game is turn-based if every state@fis turn-based (for some
player). The class of two-player games is obtained whgis a singleton. In a gam@,
givens C Q, a; € Ay, as € Ag, letpost®(s,ar,a2,—) ={¢ € Q| 3¢ € s-Jaz €
As: ¢ =0(q,a1,a2,a3)}.

ObservationsFori = 1,2,3, a setO; C 29 of observationgfor players) is a par-
tition of @ (i.e., O; is a set of non-empty and non-overlapping subsets)pfind
their union covers)). Letobs; : @ — O; be the function that assigns to each state
q € @ the (unique) observation for playethat containg,, i.e. such thay € obs;(q).
The functionsobs; are extended to sequences= ¢ ...q, Of states in the natu-
ral way, namelyobs;(p) = obs;(qo)...obs;(g,). We say that playet is blind if

O; = {Q}, that is playeri has only one observation; playghasperfect informa-
tionif O; = {{q} | ¢ € Q}, that is player can distinguish each state; and playes
less informedhan player (we also say player 2 is more informed) if for all € O,
there exist®; € @, such thab, C o;.

StrategiesFori = 1,2, 3, let X; be the set oftrategiess; : (’)i+ — A; of playeri
that, given a sequence of past observations, give an aafopldyeri. Equivalently,
we sometimes view a strategy of playeas a functions; : QT — A; satisfying
ai(p) = o;(p") forall p,p’ € Q7 such thatobs;(p) = obs;(p’), and say that; is
observation-based

OutcomeGiven strategies; € X; (i = 1,2, 3) in G, theoutcome playrom a statey,
is the infinite sequencg)! 7272 = qoq; ... such that for allj > 0, we haveg; 1 =

8(qj, ), dl, al) wherea! = o;(qo ... q;) (fori = 1,2,3).
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ObjectivesAn objectiveis a set C Q¥ of infinite sequences of states. A plagatis-
fiesthe objectiver if p € . An objectivea is visiblefor players if for all p, p’ € Q¥,
if p € aandobs;(p) = obs;(p'), thenp’ € «. We consider the following objectives:

— Reachability Given a set7 C (@ of target states, theeachability objective
Reach(7') requires that a state i be visited at least once, that Reach(7) =
{p=qq-|F>0:q, €T}

— SafetyGivenasef C () of target states, theafetyobjectiveSafe(7) requires that
only states ir7” be visited, that isSafe(7) = {p=qoq1 -+ |Vk > 0:qr € T}.

— Parity. For a playp = goq1 ... we denote byinf(p) the set of states that occur
infinitely often inp, that is,Inf(p) = {¢ € Q | Vk > 0-3n > k : ¢, = ¢}. For
de N letp: Q@ — {0,1,...,d} be a priority function, which maps each state
to a nonnegative integer priority. The parity objectRaxity(p) requires that the
minimum priority occurring infinitely often be even. FormalParity(p) = {p |
min{p(q) | ¢ € Inf(p)} is every. Parity objectives are a canonical way to express
w-regular objectives [27]. If the priority function is coastt over observations of
playeri, that is for all observations € O, we havep(q) = p(¢’) forall ¢,¢" € ~,
then the parity objectivRarity(p) is visible for player.

Decision problemGiven a gamés = (@, qo, d) and an objectivex C Q¥, thethree-

player decision problerns to decide ifo; € X1 Voo € Xy-FJog € X3 ¢ P 727 € a.
The results for the three-player decision problem have izapbns for decision

problems on partial-observation stochastic games thabwedily define below.

Two-player partial-observation stochastic gam@s/en alphabetl; of actions, and set
O, of observations (for player< {1, 2}), atwo-player partial-observation stochastic
game(for brevity, two-player stochastic game) is a tugfe= (Q, qo, §) where@ is

a finite set of statesyy € @ is the initial state, and : Q@ x A; x As — D(Q) is

a probabilistic transition wher®(Q) is the set of probability distributions : Q@ —
[0,1] on@, such thad_ _, x(g) = 1. Given a current statg and actions:, b for the
players, the transition probability to a successor sgate é(q, a, b)(¢’). Observation-
based strategies are defined as for three-player gamesutdome playfrom a state
qo under strategies, o5 is an infinite sequence = qgagbo ¢1 - .. such thata, =
01(q0--- i), bi = 02(qo - - - q:), andd(g;, a;, b;)(qi+1) > 0 forall i > 0.

Qualitative analysisGiven an objectivey that is Borel measurable (all Borel sets in
the Cantor topology and all objectives considered in thjzepare measurable [15]), a
strategy; for playerl is almost-sure winningresp. positive winningfor the objective

a fromqy if for all observation-based strategiesfor player2, we havePry! 7> (a) = 1
(resp.,Prg 7 (o) > 0) wherePrg!-?(-) is the unique probability measure induced
by the natural probability measure on finite prefixes of plgys, the product of the
transition probabilities in the prefix).

3 Three-Player Games with Player 1 Less Informed

We consider the three-player (non-stochastic) games dkfirtgection 2. We show that
for reachability and parity objectives the three-playecisien problem is decidable



when playerl is less informed than playe. The problem is EXPSPACE-complete
when playerl is blind, and 2-EXPTIME-complete in general.

Remark 1.0bserve that once the strategies of the first two playersxaé fiie obtain a
graph, and in graphs perfect-information coincides withdfor construction of a path
(see [6, Lemma 2] that counting strategies that count thebeumf steps are sufficient
which can be ensured by a player with no information). Henitleout loss of generality
we consider that player 3 has perfect observation, and depliservation for player 3.

Theorem 1 (Upper bounds) Given a three-player gam@ = (Q, qo, §) with player1l
less informed than player and a parity objectivey, the problem of deciding whether
Joy € Xy -Vog € Xy - dog € X3 1 pgo7*73 € acan be solved in 2-EXPTIME. If
player1 is blind, then the problem can be solved in EXPSPACE.

Proof. The proof is by a reduction of the decision problem for thpéserer games to
a decision problem for partial-observation two-player gamwith the same objective.
We present the reduction for parity objectives that areblasior player2 (defined by
priority functions that are constant over observations laf/@r 2). The general case
of not necessarily visible parity objectives can be solveih@g a reduction to visible
objectives, as in [6, Section 3].

Given a three-player ganté = (Q, qo, 9) over alphabet of actiong; (: = 1,2, 3),
and observation®;, O, C 29 for playerl and player, with playerl less informed
than player2, we construct a two-player gamé = (Qx, {0}, du) over alphabet of
actionsA’, (i = 1,2), and observation®; C 2%# and perfect observation for player 2,
where (intuitive explanations follow):

- Qup={5€29|s#£2 N30y €0y:5C 03};

- All = A; X (2Q X Ay — 02), andA’2 = Ay;

—0; ={{s €Qu|sCo}|o €01} andletobs; : Qu — O] be the
corresponding observation function;

— 61(s, (a1, f),as) = post®(s, a1, as, —) N f(s,az).

Intuitively, the state spad@y is the set of knowledges of play2about the current
state inG, i.e., the sets of states compatible with an observatiorayfep2. Along a
play in H, the knowledge of playe? is updated to represent the set of possible current
states in which the gam@ can be. InH player2 has perfect observation and the role
of playerl in the gameH is to simulate the actions of both playeand player in
G. Since playee fixes his strategy before playgrin G, the simulation should not let
player2 know player3’s action, but only the observation that playewill actually see
while playing the game. The actions of playiem H are pairs(a;, f) € A} where
aq is a simple action of playerin G, andf gives the observatiofi(s, az) received by
player2 after the response of play&to the actioru, of player2 when the knowledge of
player2is s.In H, playerl has partial observation, as he cannot distinguish knoveledg
of player2 that belong to the same observation of playeér G. The transition relation
updates the knowledges of playzas expected. Note thgd,| = |O}|, and therefore
if player 1 is blind in G then he is blind ind as well.

Given a visible parity objectivee = Parity(p) wherep : @ — {0,1,...,d} is
constant over observations of playgiet o’ = Parity(p’) wherep’(s) = p(q) for all
g € sands € Qpy. Note that the functiop’ is well defined since is a subset of an



observation of playe? and thusp(q) = p(¢’) for all ¢,¢' € s. However, the parity

objectivea’ = Parity(p’) may not be visible to player in G. We establish that given
witness strategies i@ we can construct witness strategieddrand vice-versa, and the
details of the strategy constructions are presented in [1]. a

Theorem 2 (Lower bounds).Given a three-player gam@ = (Q, qo, §) with playerl
less informed than playe?r and a reachability objectiver, the problem of deciding
whetherdoy, € X1 - Vog € Xy -dog € X3 : P77 € is 2-EXPTIME-hard. If
playerl is blind (and even when player 2 is also blind), then the prabis EXPSPACE-
hard.

Proof. The proof of 2-EXPTIME-hardness is obtained by a polynortirak reduc-
tion of the membership problem for exponential-spalternatingTuring machines to
the three-player problem. The same reduction for the shease of exponential-space
nondeterministiduring machines shows EXPSPACE-hardness when plaigeblind
(because our reduction yields a game in which playér blind when we start from
a nondeterministic Turing machine). The membership pralita Turing machines is
to decide, given a Turing machirdd and a finite wordw, whetherM acceptsw. The
membership problem is 2-EXPTIME-complete for exponergfzce alternating Tur-
ing machines, and EXPSPACE-complete for exponentialespatdeterministic Tur-
ing machines [19].

An alternating Turing machine is a tupld = (Qv,Qn, X, I, A, qo, Gace, Gre;)
where the state spacg= @\ U Q. consists of the sep,, of or-states, and the séX,
of and-states. The input alphabefisthe tape alphabet 8 = YU {#} where# is the
blank symbol. The initial state ig), the accepting state ig,.., and the rejecting state
iS gre;. The transition relation il C Q x I' x @ x I' x {—1, 1}, where a transition
(¢,7,4',7',d) € A intuitively means that, given the machine is in stafeand the
symbol under the tape headysthe machine can move to state replace the symbol
under the tape head by, and move the tape head to the neighbor cell in direcfion
A configurationc of M is a sequence € (I' U (Q x I"))“ with exactly one symbol in
Q< I', which indicates the current state of the machine and thidosf the tape head.
The initial configuration o/ onw = agay . ..a, i1Sco = (go, a0) ar-ag -« an-#<.
Given the initial configuration o/ onw, it is routine to define the execution trees of
M where at least one successor of each configuration in am@;-sind all successors
of the configurations in an and-state are present (and wenasthat all branches reach
eitherge.. Or gr.;), and to say thad/ acceptsw if all branches of some execution tree
reachq,... Note thatQ), = @ for nondeterministic Turing machines, and in that case
the execution tree reduces to a single path. A Turing maadhinses exponential space
if for all wordsw, all configurations in the execution &f onw contain at mos© (1w
non-blank symbols.

We present the key steps of our reduction from alternatinghgiunachines. Given
a Turing machinel/ and a wordw, we construct a three-player game with reachabil-
ity objective in which playenl and player2 have to simulate the execution 8 on
w, and playerl has to announce the successive configurations and transsitiothe
machine along the execution. Playjleannounces configurations one symbol at a time,
thus the alphabet of playéris A; = I'U (Q x I') U A. In an initialization phase,



the transition relation of the game forces playao announce the initial configuration
¢o (this can be done witiD(n) states in the game, where= |w|). Then, the game
proceeds to a loop where playekeeps announcing symbols of configurations. At all
times along the execution, some finite information is stanetthe finite state space of
the game: a window of the last three symhalsz,, z3 announced by playdr, as well
as the last symbdlead € @ x I" announced by playdr(that indicates the current ma-
chine state and the position of the tape head). After thmlizition phase, we should
havez; = zo = z3 = # andhead = (qo, ap). When playerl has announced a full
configuration, he moves to a state of the game where eithgeplaor player2 has
to announce a transition of the machine: fieed = (p, a), if p € @\, then player
chooses the next transition, andife @, then player2 chooses. Note that the tran-
sitions chosen by playex are visible to playei and this is the only information that
playerl observes. Hence playeiis less informed than play@r and both playet and
player2 are blind when the machine is nondeterministic. If a trémsitq, v, ¢, v/, d)

is chosen by player, and eithep # g or a # -, then playet loses (i.e., a sink state is
reached to let player lose, and the target state of the reachability objectivedshed
to let player2 lose). If at some point playdrannounces a symb@, a) with p = gace,
then player wins the game.

The role of player is to check that playet faithfully simulates the execution of
the Turing machine, and correctly announces the configumsitiAfter every announce-
ment of a symbol by playel, the game offers the possibility to play2to compare
this symbol with the symbol at the same position in the nerfigaration. We say that
player2 checks(and whether playe2 checks or not is not visible to playé), and
the checked symbol is stored as Note that playee can be blind to check because
player2 fixes his strategy after playeér The windowz, , z5, z3 stored in the state space
of the game provides enough information to update the midellez, in the next con-
figuration, and it allows the game to verify the check of pfidHowever, the distance
(in number of steps) between the same position in two cotisecconfigurations is
exponential (sag” for simplicity), and the state space of the game is not largaigh
to check that such a distance exists between the two symbiwigared by playe?. We
use playeB to check that playe?2 makes a comparison at the correct position. When
player2 decides to check, he has to count frorto 2" by announcing after every sym-
bol of playerl a sequence af bits, initially all zeros (again, this can be enforced by
the structure of the game with(n) states). It is then the responsibility of playkto
check that playe? counts correctly. To check this, playgican at any time choose a
bit positionp € {0,...,n — 1} and store the bit valué, announced by player at
positionp. The value ofb, andp is not visible to playeR. While player2 announces
the bitsby41,...,b,—1 at positionp + 1, ...,n — 1, the finite state of the game is used
to flip the value of,, if all bits b,+1, ..., b,—1 are equal td, hence updating, to the
value of thep-th bit in what should be the next announcement of pl&yén the next
bit sequence announced by playeithe p-th bit is compared wittb,,. If they match,
then the game goes to a sink state (as playes faithfully counted), and if they differ
then the game goes to the target state (as pajecaught cheating). It can be shown
that this can be enforced by the structure of the game @ith?) states, that i©)(n)



states for each value of As before, whether playek checks or not is not visible to
player2.

Note that the checks of play@rand player3 are one-shot: the game will be over
(either in a sink or target state) when the check is finishéis 6 enough to ensure a
faithful simulation by playet, and a faithful counting by playe; becaus€1) partial
observation allows to hide to a player the time when a checkirs¢ and2) player2
fixes his strategy after playénand playes after player), thus they can decide to run
a check exactly when playér(or player2) is not faithful. This ensures that player
does not win if he does not simulate the executiodbbn w, and that playe2 does
not win if he does not count correctly.

Hence this reduction ensures tidtacceptsv if and only if the answer to the three-
player game problem is &S, where the reachability objective is satisfied if player
eventually announces that the machine has reaghedthat is if M acceptsw), or if
player2 cheats in counting, which can be detected by player a

4 Three-Player Games with Player 1 Perfect

When player 2 is less informed than player 1, we show thaétpiayer games get much
more complicated (even in the special case where plajias perfect information). We
note that for reachability objectives, the three-playerisien problem is equivalent
to the qualitative analysis of positive winning in two-péystochastic games, and we
show that the techniques developed in the analysis of tageplstochastic games can
be extended to solve the three-player decision problemgaitbty objectives as well.
For reachability objectives, the three-player decisioobpem is equivalent to the
problem of positive winning in two-player stochastic gamdeere the third player is
replaced by a probabilistic choice over the action set witliaum probability. Intu-
itively, after playerl and player2 fixed their strategy, the fact that play&rcan con-
struct a (finite) path to the target set is equivalent to tietfaat such a path has positive
probability when the choices of play&rare replaced by uniform probabilistic transi-
tions. Given a three-player ganie = (@, qo, 9), let Uniform(G) = (Q, g0, ") be the
two-player partial-observatiostochastiggame (with same state space, action sets, and

observations for playerr and player) whered’(q, a1, a)(¢') = |{a3‘6(q"a‘1£2"a3):q i

foralla; € Ay, as € Az, andq, ¢’ € Q. Formally, the equivalence result is presented in
Lemma 1, and the equivalence holds for all three-player gamat restricted to three-
player games where player 1 has perfect information). Heweve will use Lemma 1
to establish results for three-player games where playeasipbrfect information.

Lemma 1. Given a three-player gam@ and a reachability objective, the answer to
the three-player decision problem f¢&, o) is YESf and only if playerl is positive
winning fora in the two-player partial-observation stochastic gabhéform(G).

Reachability objectivesEven in the special case where playdras perfect informa-
tion, and for reachability objectives, non-elementary rognis necessary in general for
playerl to win in three-player games. This result follows from Leminand from the



result of [7, Example 4.2 Journal version] showing that mtementary memory is nec-
essary to win with positive probability in two-player stashic games. It also follows
from Lemma 1 and the result of [7, Corollary 4.9 Journal va@rgthat the three-player
decision problem for reachability games is decidable. Téeidhbility result can be
extended to safety objectives [1].

Theorem 3. When player 1 has perfect information, the three-playeisiex problem
is decidable for both reachability and safety games, anddachability games memory
of size non-elementary is necessary in general for player

5 Four-Player Games

We show that the results presented for three-player ganteadxo games with four
players (the fourth player is universal and perfectly infed). The definition of four-
player games and related notions is a straightforward sidarof Section 2.

In a four-player game with playdrless informed than playé, and perfect infor-
mation for both playe8 and player., consider théour-player decision problemwhich
is to decide ifdoy € X - Vo € X5 - dog € X3 -Vou € Xy : pgol,oz.,cfs.,cm € o
for a parity objectivex (also see [1, Remark 2] for further discussion). Since playe
and player4 have perfect information, we assume without loss of geitgriddat the
game is turn-based for them, that is there is a partition efstate spac€) into two
setsQ; and@4 (Where@ = Q3 U Q4) such that the transition function is the union of
03: Q3 x A1 X Ay x A3 — Q anddy : Q4 x A1 X Ay x Ay — Q. Strategies and out-
comes are defined analogously to three-player games. &gyraf player € {3,4} is
of the forme; : Q* - Q; — A;.

We present a polynomial reduction of the problem for fouayelr games to solv-
ing a three-player game with the first player less informeshttihe second player [1].
Hardness follows from the special case of three-player game

Theorem 4. The four-player decision problem with playér less informed than
player 2, and perfect information for both playe¥y and player4 is 2-EXPTIME-
complete for parity objectives.

6 Applications

We now discuss applications of our results in the contextoftesis and qualitative
analysis of two-player partial-observation stochastimgs.

Sequential synthesis.The sequential synthesiproblem consists of an open sys-
tem of partially implemented modules (with possible notedainism or choices)
My, Ms, ..., M, that need to be refined (i.e., the choices determined byegies) such
that the composite system after refinement satisfy a spaiific The system is open
in the sense that after the refinement the composite systesadsive and interact with
an environment. Consider the problem where first d\égt. . ., M}, of modules are re-
fined, then a setly1, ..., M, are refined by an external implementor, and finally the
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remaining set of modules are refined. In other words, the tescre refined sequen-
tially: first a set of modules whose refinement can be comttiplhen a set of modules
whose refinement cannot be controlled as they are implementernally, and finally
the remaining set of modules. If the refinements of modigs. . . , M, do not have
access to private variables of the remaining modules weiroht@artial-observation
game with four players: the first (existential) player cepends to the refinement of
modulesMy, ..., My, the second (universal) player corresponds to the refineofen
modulesMy1, . .., My, the third (existential) player corresponds to the refinenoé
the remaining modules, and the fourth (adversarial) plas/éne environment. If the
second player has access to all the variables visible tortepfayer, then player 1 is
less informed.

Two-player partial-observation stochastic gamesOur results for four-player games
imply new complexity results for two-player stochastic gamFor qualitative anal-
ysis (positive and almost-sure winning) under finite-meymstrategies for the play-
ers the following reduction has been established in [10, hani] (see Lemma 2.1
of the arxiv version): the probabilistic transition furani can be replaced by a turn-
based gadget consisting of two perfect-observation ptayare angelic (existential)
and one demonic (universal). The turn-based gadget is the sa used for perfect-
observation stochastic games [5, 11]. In [10], only the Epease of perfect observa-
tion for player 2 was considered, and hence the problem estiiecthree-player games
where only player 1 has partial observation and the otheptexers have perfect obser-
vation. In case where player 2 has partial observationgtieation of [10] requires two
perfect-observation players, and gives the problem of-fdayer games (with perfect
observation for player 3 and player 4). Hence when playetelssinformed, we obtain
a 2-EXPTIME upper bound from Theorem 4, and obtain a 2-EXPH Ibver bound
from Theorem 2 and Lemma 1 (see [1] for lower bound for alnsose winning). Thus
we obtain the following result.

Theorem 5. The qualitative analysis problems (almost-sure and pasitivinning)
for two-player partial-observation stochastic parity gasnwhere player 1 is less in-
formed than player 2, under finite-memory strategies fohiptayers, are 2-EXPTIME-
complete.

Remark 2.Note that the lower bounds for Theorem 5 are establishedefaxhability
objectives. Moreover, it was shown in [7, Section 5] thatdoalitative analysis of two-
player partial-observation stochastic games with reaitihyabbjectives, finite-memory
strategies suffice, i.e., if there is a strategy to ensur@sihsure (resp., positive) win-
ning, then there is a finite-memory strategy. Thus the resafliTheorem 5 hold for
reachability objectives even without the restriction oftérmemory strategies, and it
extends the result of [7, Theorem 1] which showed EXPTIMEipteteness for reach-
ability objectives when playeX has perfect observation.
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