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Abstract9

Stochastic two-player games model systems with an environment that is both adversarial and stochastic.10

In this paper, we study the expected value of bounded quantitative prefix-independent objectives11

in the context of stochastic games. We show a generic reduction from the expectation problem to12

linearly many instances of the almost-sure satisfaction problem for threshold Boolean objectives. The13

result follows from partitioning the vertices of the game into so-called value classes where each class14

consists of vertices of the same value. Our procedure further entails that the memory required by15

both players to play optimally for the expectation problem is no more than the memory required by16

the players to play optimally for the almost-sure satisfaction problem for a corresponding threshold17

Boolean objective.18

We show the applicability of the framework to compute the expected window mean-payoff measure19

in stochastic games. The window mean-payoff measure strengthens the classical mean-payoff measure20

by computing the mean payoff over windows of bounded length that slide along an infinite path. We21

show that the decision problem to check if the expected window mean-payoff value is at least a given22

threshold is in UP ∩ coUP when the window length is given in unary.23

2012 ACM Subject Classification Probability and statistics → Stochastic processes24

Keywords and phrases stochastic games, finitary objectives, mean payoff, reactive synthesis25

1 Introduction26

Reactive systems typically have an infinite execution where the controller continually reacts to27

the environment. Given a specification, the reactive controller synthesis problem [24] concerns28

with synthesising a policy for the controller such that the specification is satisfied by the system29

for all behaviours of the environment. This problem is modelled using two-player turn-based30

games on graphs, where the two players are the controller (Player 1) and the environment31

(Player 2), the vertices and the edges of the game graph represent the states and transitions32

of the system, and the objective of Player 1 is to satisfy the specification. An execution of the33

system is then an infinite path in the game graph. The reactive controller synthesis problem34

corresponds to determining if there exists a strategy of Player 1 such that for all strategies of35

Player 2, the outcome satisfies the objective. If such a winning strategy exists, then we would36

also like to synthesise it. The environment is considered as an adversarial player to ensure37

that the specification is met even in the worst-case scenario.38

Objectives are either Boolean or quantitative. Each execution either satisfies a Boolean39

objective ψ or does not satisfy ψ. The set of executions that satisfy ψ form a language over40

infinite words with the alphabet being the set of vertices in the graphs. On the other hand, a41

quantitative objective φ evaluates the performance of the execution by a numerical metric,42

which Player 1 aims to maximise and Player 2 aims to minimise. A quantitative objective can43

be viewed as a real-valued function over infinite paths in the graph.44

In the presence of uncertainty or probabilistic behaviour, the game graph becomes stochastic.45

Fixing the strategies of the two players gives a distribution over infinite paths in the game46
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graph. For Boolean objectives ψ, the goal of Player 1 is to maximise the probability that an47

outcome satisfies ψ. For quantitative objectives φ, there are two possible views: (i) satisfaction:48

given a threshold λ, to maximise the probability that φ-value of the outcome is greater than λ;49

(ii) expectation: to maximise the φ-value of the outcome in expectation. Either view may be50

desirable depending on the context [8,9,11,12]. The satisfaction view can be seen as a Boolean51

objective: the φ-value of the outcome is either greater than λ or it is not. The expectation52

view is more nuanced, and is the subject of study in this paper.53

In this paper, we look at the expectation problem for quantitative prefix-independent54

objectives (also referred to as tail objectives). These are objectives that do not depend on55

finite prefixes of the plays, but only on the long-run behaviour of the system. In systems, we56

are often willing to allow undesirable behaviour in the short-term, if the long run behaviour is57

desirable. Prefix-independent objectives model such requirements and thus are of interest to58

study [13]. Prefix-independent objectives also have the benefit that they satisfy the Bellman59

equations [39], which simplifies their analysis. The expectation problem for such objectives60

arises naturally in many scenarios. For example: (i) An algorithmic trading system is designed61

to generate profit by executing trades based on real-time market data. Following an initial62

phase of learning and unstable behaviour due to parameter tuning, average profit over a63

bounded time window must always exceed a threshold and decisions need to be made within64

short well-defined intervals for them to be effective. (ii) A power plant may have different65

strategies to produce power (such as coal, solar, nuclear, wind) and must allocate resources66

among these strategies so as to maximise the power produced in expectation.67

Contributions. All of our contributions are with regard to quantitative prefix-independent68

objectives φ that are bounded (i.e., the image of φ is bounded between integers −Wφ and69

Wφ) and such that a bound denφ on the denominators of the optimal expected φ-values of70

vertices in the game is known. The bound on the image ensures determinacy [40], that is,71

the players have optimal strategies, and the bound on the denominator of optimal values of72

vertices discretise the search space. These bounds often exist and are easily derivable for73

common objectives of interest such as mean payoff.74

Our primary contribution is a reduction of the expectation problem for such an objective75

φ to linearly many instances of the almost-sure satisfaction problem for threshold Boolean76

objectives {φ > λ} for thresholds λ ∈ Q. Deciding the almost-sure satisfaction of {φ > λ}77

is conceptually simpler than computing the expected value of φ, as in the former, we only78

need to consider if the measure of the paths that satisfy the objective {φ > λ} is equal to79

one, whereas in the latter, one must take the averages of the measures of the sets of paths π80

weighted with the value φ(π) of the paths. Our technique is generic in the sense that when an81

algorithm for the almost-sure satisfaction problem for {φ > λ} is known, we directly obtain82

the complexity and a way to solve the expectation problem for φ.83

Our reduction builds on the technique introduced in [21] for Boolean prefix-independent84

objectives and non-trivially extends it to quantitative prefix-independent objectives φ for which85

the bounds Wφ and denφ are known. The expected φ-values of vertices are nondeterministically86

guessed, and we present a characterisation (Theorem 7, similar to [21, Lemma 8] but with87

important and subtle differences) to verify the guess. We also explicitly construct strategies88

for both players that are optimal for the expectation of φ, in terms of almost-sure winning89

strategies for {φ > λ} (proof of Lemma 9). The memory requirement for the constructed90

optimal strategies is the same as that of the almost-sure winning strategies (Corollary 10).91

Our framework gives an alternative approach to solve the expectation problem for well-92

studied objectives such as expected mean payoff and gives new results for not-as-well-studied93

objectives such as the window mean-payoff objectives introduced in [16]. As our secondary94

contribution, we illustrate our technique by applying it to two variants of window mean-95

payoff objectives: fixed (FWMP(ℓ)) and bounded (BWMP) window mean-payoff. Using our96
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Table 1 Complexity and bounds on memory requirement for window mean-payoff objectives

Objective Complexity Memory (Player 1)
(lower [26], upper)

Memory (Player 2)
(lower [26], upper)

FWMP(ℓ) UP ∩ coUP ℓ − 1, ℓ |V | − ℓ, |V | · ℓ

BWMP UP ∩ coUP memoryless, memoryless infinite, infinite

reduction, we are able to show that for both of these objectives, the expectation problem97

is in UP ∩ coUP (Theorem 18 and Theorem 22), a result that was not known before. The98

UP ∩ coUP upper bound for window mean-payoff objectives matches the special case of simple99

stochastic games [17, 25], and thus would require a major breakthrough to be improved. The100

lower bounds on the memory requirements for these objectives carry over from special case of101

the non-stochastic games [16,26]. We summarise the complexity results and bounds on the102

memory requirements for the window mean-payoff objectives in Table 1.103

Related work. Stochastic games were introduced by Shapley [43] where these games were104

studied under expectation semantics for discounted-sum objectives. In [18], it was shown that105

solving stochastic parity games reduces to solving stochastic mean-payoff games. Further,106

solving stochastic parity games, stochastic mean-payoff games, and simple stochastic games107

(i.e., stochastic games with reachability objective) are all polynomial-time equivalent [1,34], and108

thus, are all in UP∩coUP [17]. A sub-exponential (or even quasi-polynomial) time deterministic109

algorithms for simple stochastic games on graphs with poly-logarithmic treewidth was proposed110

in [23]. In [33], sufficient conditions on the objective were shown such that optimal deterministic111

memoryless strategies exist for the players. In [39], value iteration to solve the expectation112

problem in stochastic games with reachability, safety, total-payoff, and mean-payoff objectives113

was studied.114

Mean-payoff objectives were studied initially in two-player games, without stochasticity [28,115

44], and with stochasticity in [32]. Finitary versions were introduced as window mean-payoff116

objectives [16]. For finitary mean-payoff objectives, the satisfaction problem [11] and the117

expectation problem [8] were studied in the special case of Markov decision processes (MDPs),118

which correspond to stochastic games with a trivial adversary. Expected mean payoff, expected119

discounted payoff, expected total payoff, etc. are widely studied for MDPs [6,41]. Both the120

expectation problem [8] and the satisfaction problem [11] for the FWMP(ℓ) objective are in121

PTIME, while they are in UP ∩ coUP for the BWMP objective. Ensuring the satisfaction and122

expectation semantics simultaneously was studied in MDPs for the mean-payoff objective123

in [22] and for the window mean-payoff objectives in [30]. In both cases, the complexity was124

shown to be no greater than that of only expectation optimisation.125

The satisfaction problem for window mean-payoff objectives has been studied for two-player126

stochastic games in [26]. While positive and almost-sure satisfaction of FWMP(ℓ) are in PTIME,127

it follows from [26] that the problem is in UP ∩ coUP for quantitative satisfaction i.e., with128

threshold probabilities 0 < p < 1. Furthermore, the satisfaction problem of BWMP is in129

UP ∩ coUP and thus has the same complexity as that of the special case of MDPs [11].130

Due to lack of space, the more intricate proofs and techniques are moved to the appendix131

while keeping a broad overview in the main body.132

2 Preliminaries133

Probability distributions. A probability distribution over a finite non-empty set A is a
134

function Pr : A → [0, 1] such that
∑

a∈A Pr(a) = 1. We denote by D(A) the set of all probability
135
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Figure 1 A stochastic game. Player 1 vertices are denoted by circles, Player 2 vertices are denoted
by boxes, and probabilistic vertices are denoted by diamonds. The payoff for each edge is shown in
red and probability distribution out of probabilistic vertices is shown in blue.

distributions over A. For the algorithmic and complexity results, we assume that probabilities136

are given as rational numbers.137

Stochastic games. We consider two-player turn-based zero-sum stochastic games (or simply,138

stochastic games in the sequel). The two players are referred to as Player 1 (she/her) and139

Player 2 (he/him). A stochastic game is given by G = ((V,E), (V1, V2, V♢),P, w), where:
140

(V,E) is a directed graph with a finite set V of vertices and a set E ⊆ V ×V of directed edges141

such that for all vertices v ∈ V , the set E(v) = {v′ ∈ V | (v, v′) ∈ E} of out-neighbours of
142

v is nonempty, i.e., E(v) ̸= ∅ (no deadlocks).143

(V1, V2, V♢) is a partition of V . The vertices in V1 belong to Player 1, the vertices in V2144

belong to Player 2, and the vertices in V♢ are called probabilistic vertices;
145

P : V♢ → D(V ) is a probability function that describes the behaviour of probabilistic vertices146

in the game. It maps each probabilistic vertex v ∈ V♢ to a probability distribution P(v)147

over the set E(v) of out-neighbours of v such that P(v)(v′) > 0 for all v′ ∈ E(v) (i.e., all148

out-neighbours have non-zero probability);149

w : E → Q is a payoff function assigning a rational payoff to every edge in the game.150

Stochastic games are played in rounds. The game starts by initially placing a token on151

some vertex. At the beginning of a round, if the token is on a vertex v, and v ∈ Vi for152

i ∈ {1, 2}, then Player i chooses an out-neighbour v′ ∈ E(v); otherwise v ∈ V♢, and an153

out-neighbour v′ ∈ E(v) is chosen with probability P(v)(v′). Player 1 receives from Player 2154

the amount w(v, v′) given by the payoff function, and the token moves to v′ for the next round.155

This continues ad infinitum resulting in an infinite sequence π = v0v1v2 · · · ∈ V ω such that156

(vi, vi+1) ∈ E for all i ≥ 0, called a play. For i < j, we denote by π(i, j) the infix vivi+1 · · · vj157

of π. Its length is |π(i, j)| = j − i, the number of edges. We denote by π(0, j) the finite prefix158

v0v1 · · · vj of π, and by π(i,∞) the infinite suffix vivi+1 . . . of π. We denote by PlaysG and159

PrefsG the set of all plays and the set of all finite prefixes in G respectively. We denote by160

Last(ρ) the last vertex of the prefix ρ ∈ PrefsG . We denote by Prefsi
G (i ∈ {1, 2}) the set of all161

prefixes ρ such that Last(ρ) ∈ Vi.162

A stochastic game with V♢ = ∅ is a non-stochastic two-player game, a stochastic game
163

with V2 = ∅ is a Markov decision process (MDP), and a stochastic game with V1 = V2 = ∅ is
164

a Markov chain. Figure 1 shows an example of a stochastic game; Player 1 vertices are shown
165

as circles, Player 2 vertices as boxes, and probabilistic vertices as diamonds.166

Subgames and traps. Given a stochastic game G = ((V,E), (V1, V2, V♢),P, w), a subset167

V ′ ⊆ V of vertices induces a subgame if (i) every vertex v′ ∈ V ′ has an outgoing edge in V ′,168

that is E(v′) ∩ V ′ ̸= ∅, and (ii) every probabilistic vertex v′ ∈ V♢ ∩ V ′ has all outgoing edges169

in V ′, that is E(v′) ⊆ V ′. The induced subgame is ((V ′, E′), (V1 ∩V ′, V2 ∩V ′, V♢ ∩V ′),P′, w′),170

where E′ = E∩ (V ′ ×V ′), and P′ and w′ are restrictions of P and w respectively to (V ′, E′). If171
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T ⊆ V is such that for all v ∈ T , if v ∈ V1 ∪V♢ then E(v) ⊆ T and if v ∈ V2 then E(v)∩T ̸= ∅,172

then T induces a subgame, and the subgame is a trap for Player 1 in G, since Player 2 can173

ensure that if the token reaches T , then it never escapes.174

Boolean objectives. A Boolean objective ψ is a Borel-measurable subset of PlaysG [40]. A
175

play π ∈ PlaysG satisfies an objective ψ if π ∈ ψ. In a stochastic game G with objective ψ, the176

objective of Player 1 is ψ, and since G is a zero-sum game, the objective of Player 2 is the177

complement set ψ = PlaysG \ ψ. An example of a Boolean objective is reachability, denoted
178

Reach(T ), the set of all plays that visit a vertex in the target set T ⊆ V . This is formally179

defined and more examples of Boolean objectives are given in Appendix A.1.180

Quantitative objectives. A quantitative objective is a Borel-measurable function φ : PlaysG →
181

R. In a stochastic game G with objective φ, the objective of Player 1 is φ and the182

objective of Player 2 is −φ, the negative of φ. Let π = v0v1v2 · · · be a play. Some183

common examples of quantitative objectives include the mean-payoff objective MP(π) =184

lim infn→∞
1
n

∑n
i=0 w(vi, vi+1), and the liminf objective liminf(π) = lim infn→∞ w(vn, vn+1).185

In this work, we also consider the window mean-payoff objective, which is defined in Sec-186

tion 4. Corresponding to a quantitative objective φ, we define threshold objectives which
187

are Boolean objectives ψ of the form {π ∈ PlaysG | φ(π) ▷◁ λ} for thresholds λ ∈ R and for188

▷◁ ∈ {<,≤, >,≥}. We denote this threshold objective succinctly as {φ ▷◁ λ}.189

Prefix independence. An objective is said to be prefix-independent if it only depends on
190

the suffix of a play. Formally, a Boolean objective ψ is prefix-independent if for all plays π191

and π′ with a common suffix (that is, π′ can be obtained from π by removing and adding a192

finite prefix), we have that π ∈ ψ if and only if π′ ∈ ψ. Similarly, a quantitative objective φ is193

prefix-independent if for all plays π and π′ with a common suffix, we have that φ(π) = φ(π′).194

Mean payoff and liminf are examples of prefix-independent objectives, whereas reachability195

and discounted payoff [2] are not.196

Strategies. A (deterministic or pure) strategy1 for Player i ∈ {1, 2} in a game G is a function197

σi : Prefsi
G → V that maps prefixes ending in a vertex v ∈ Vi to a successor of v. Strategies198

can be realised as the output of a (possibly infinite-state) Mealy machine [38]. We formally199

describe the strategy defined by a Mealy machine in Appendix A.1. The memory size of a200

strategy σi is the smallest number of states a Mealy machine defining σi can have. A strategy201

σi is memoryless if σi(ρ) only depends on the last element of the prefix ρ, that is, for all202

prefixes ρ, ρ′ ∈ Prefsi
G if Last(ρ) = Last(ρ′), then σi(ρ) = σi(ρ′).203

A strategy profile σ = (σ1, σ2) is a pair of strategies σ1 and σ2 of Player 1 and Player 2204

respectively. A play π = v0v1 · · · is consistent with a strategy σi of Player i (i ∈ {1, 2}) if205

for all j ≥ 0 with vj ∈ Vi, we have vj+1 = σi(π(0, j)). A play π is an outcome of a profile206

σ = (σ1, σ2) if it is consistent with both σ1 and σ2. For a Boolean objective ψ, we denote by207

Prσ1,σ2
G,v (ψ) the probability that an outcome of the profile (σ1, σ2) in G with initial vertex v208

satisfies ψ. This is formally defined in Appendix A.1.209

Satisfaction probability of Boolean objectives. Let ψ be a Boolean objective. A210

strategy σ1 of Player 1 is winning with probability p from a vertex v in G for objective ψ if211

Prσ1,σ2
G,v (ψ) ≥ p for all strategies σ2 of Player 2. A strategy σ1 of Player 1 is positive winning212

(resp., almost-sure winning) from v for Player 1 in G with objective ψ if Prσ1,σ2
G,v (ψ) > 0 (resp.,213

Prσ1,σ2
G,v (ψ) = 1) for all strategies σ2 of Player 2. In the above, if such a strategy σ1 exists,214

then the vertex v is said to be positive winning (resp., almost-sure winning) for Player 1. If a215

1 We only consider the satisfaction and expectation of Borel-measurable objectives, and deterministic
strategies suffice for such objectives [14]. Satisfying two goals simultaneously, e.g., Pr(Reach(T1)) >
0.5 ∧ Pr(Reach(T2)) > 0.5 requires randomisation and is not allowed by our definition.
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vertex v is positive winning (resp., almost-sure winning) for Player 1, then Player 1 is said to216

play optimally from v if she follows a positive (resp., almost-sure) winning strategy from v.217

We omit analogous definitions for Player 2.218

Expected value of quantitative objectives. Let φ be a quantitative objective. Given a219

strategy profile σ = (σ1, σ2) and an initial vertex v, let Eσ
v (φ) denote the expected φ-value220

of the outcome of the strategy profile σ from v, that is, the expectation of φ over all plays221

with initial vertex v under the probability measure Prσ1,σ2
G,v (φ). We only consider objectives φ222

that are Borel-measurable and whose image is bounded. Thus, by determinacy of Blackwell223

games [40], we have that stochastic games with objective φ are determined. That is, we224

have supσ1 infσ2 Eσ
v (φ) = infσ2 supσ1 E

σ
v (φ). We call this quantity the expected φ-value of the225

vertex v and denote it by Ev(φ). We say that Player 1 plays optimally from a vertex v if she226

follows a strategy σ1 such that for all strategies σ2 of Player 2, the expected φ-value of the227

outcome is at least Ev(φ). Similarly, Player 2 plays optimally if he follows a strategy σ2 such228

that for all strategies σ1 of Player 1, the expected φ-value of the outcome is at most Ev(φ).229

If φ is a prefix-independent objective, then we have following relation between the expected230

φ-value of a vertex v and the expected φ-values of its out-neighbours.231

▶ Proposition 1 (Bellman equations). If φ is a prefix-independent objective, then the following232

equations hold for all v ∈ V .233

Ev(φ) =


maxv′∈E(v) Ev′(φ) if v ∈ V1

minv′∈E(v) Ev′(φ) if v ∈ V2∑
v′∈E(v) P(v)(v′) · Ev′(φ) if v ∈ V♢

234

In this paper, we consider the expectation problem for prefix-independent objectives. Our235

solution in turn uses the almost-sure satisfaction problem. The decision problems are defined236

as follows.237

Decision problems. Given a stochastic game G, a quantitative objective φ, a vertex v, and238

a threshold λ ∈ Q, the following decision problems are relevant:239

almost-sure satisfaction problem: Is vertex v almost-sure winning for Player 1 for a threshold
240

objective {φ > λ}?241

expectation problem: Is Ev(φ) ≥ λ? That is, is the expected φ-value of v at least λ?
242

The reader is pointed to [2] and [29] for a more comprehensive discussion on the above-243

mentioned concepts.244

3 Reducing expectation to almost-sure satisfaction245

In this section, we show a reduction (Theorem 7) of the expectation problem for bounded246

quantitative prefix-independent objectives φ to the almost-sure satisfaction problem for the247

corresponding threshold objectives {φ > λ}. The reduction involves guessing a value rv for248

every vertex v in the game, and then verifying if the guessed values are equal to the expected249

φ-values of the vertices. Theorem 7 generalises [21, Lemma 8] which studies the satisfaction250

problem for prefix-independent Boolean objectives, as Boolean objectives can be viewed as a251

special case of quantitative objectives by restricting the range to {0, 1}. We further discuss252

the difference in approaches between Theorem 7 and [21, Lemma 8] in Section 5.253

Given a game G and a bounded prefix-independent quantitative objective φ, our reduction254

requires the existence of an integer bound denφ on the denominators of expected φ-values of255

vertices in G. Since φ is bounded, there exists an integer Wφ such that |φ(π)| ≤ Wφ for every256

play π in G. Thus, for every vertex v in G, one can write Ev(φ) as p
q , where p and q are integers257
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Figure 2 Restrictions GR(1), GR(2), GR(3), GR(4), and GR(5) of the game shown in Figure 1 for the
vector r⃗ = (−2, −1, −1, −1, −1, 0, 0, 0, 0, 1, 1, 2, 2, 2).

such that |p| ≤ Wφ · denφ and 0 < q ≤ denφ . The bounds Wφ and denφ may depend on the258

objective and the structure of the graph, i.e., number of vertices, edge payoffs, probability259

distributions in the game, etc. These bounds effectively discretise the set of possible expected260

φ-values of the vertices, as there are at most (2 · Wφ · denφ + 1) · denφ distinct possible values.261

This directly gives a bound on the granularity of the possible expected φ-values of vertices,262

that is, the minimum difference between two possible values of vertices, and we represent this263

quantity by εφ . Observe that given two rational numbers with denominators at most denφ ,264

the difference between them is at least ( 1
denφ

)2, and thus, we let εφ be ( 1
denφ

)2.265

3.1 Value vectors and value classes266

We first define and give notations for value vectors, which are useful in describing the reduction,267

and then look at some of their interesting and useful properties.268

Definitions and notations. A vector r⃗ = (rv)v∈V of reals indexed by vertices in V induces
269

a partition of V such that all vertices with the same value in r⃗ belong to the same part in the270

partition. Let k⃗r denote the number of parts in the partition, and let us denote the parts by271

{R(1),R(2), . . . ,R(k⃗r)}. We call each part R(i) of the partition an r⃗-class, or simply, class if r⃗272

is clear from the context. For all 1 ≤ i ≤ k⃗r, let ri denote the r⃗-value of the class R(i). Given273

two vectors r⃗, s⃗, we write r⃗ ≥ s⃗ if for all v ∈ V , we have rv ≥ sv, and we write r⃗ > s⃗ if we have274

that r⃗ ≥ s⃗ and there exists v ∈ V such that rv > sv. For a constant c ∈ R, we denote by r⃗ + c275

the vector obtained by adding c to each component of r⃗.276

For all 1 ≤ i ≤ k⃗r, a vertex v ∈ R(i) is a boundary vertex if v is a probabilistic vertex and
277

has an out-neighbour not in R(i), i.e., if v ∈ V♢ and E(v) ̸⊆ R(i). Let Bnd(R(i)) denote the278

set of boundary vertices in the class R(i). For all 1 ≤ i ≤ k⃗r, let GR(i) denote the restriction279

of G to vertices in R(i) with all vertices in Bnd(R(i)) changed to absorbing vertices with a280

self-loop. The edge payoffs of these self loops are not important (we assume them to be 0) as281

we restrict our attention to a subgame of GR(i) that does not contain boundary vertices.282

▶ Example 2. For the game shown in Figure 1, let r⃗ = (−2,−1,−1,−1,−1, 0, 0, 0, 0, 1, 1, 2, 2, 2)283

be a value vector for vertices v1, v2, . . . , v14 respectively. Since r⃗ has five distinct values, we have284

k⃗r = 5, and the five r⃗-classes are R(1) = {v1}, R(2) = {v2, v3, v4, v5}, R(3) = {v6, v7, v8, v9},285

R(4) = {v10, v11}, and R(5) = {v12, v13, v14} with values r1 = −2, r2 = −1, r3 = 0, r4 = 1, and286

r5 = 2 respectively. Out of the five probabilistic vertices v2, v5, v8, v9 and v12, we see that287

v2, v5, and v8 are boundary vertices while v9 and v12 are not. Thus, Bnd(R(2)) = {v2, v5},288

Bnd(R(3)) = {v8}, and Bnd(R(1)) = Bnd(R(4)) = Bnd(R(5)) = ∅. We show the restrictions289

GR(i) in Figure 2. ◀290

Let φ be a bounded prefix-independent quantitative objective. Analogous to the notation291

of a general value vector r⃗, we describe notations for the expected φ-value vector consisting292

of the expected φ-values of vertices in V . For all vertices v ∈ V , let sv denote Ev(φ), the293
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expected φ-value of vertex v, and let s⃗ = (sv)v∈V denote the expected φ-value vector. Let294

S(i) denote the ith s⃗-class and let si denote the s⃗-value of S(i).295

Given a vector r⃗, it follows from Proposition 1 that the following is a necessary (but not296

sufficient) condition for r⃗ to be the expected φ-value vector s⃗.297

Bellman condition: for every vertex v ∈ V , the following Bellman equations hold
298

rv =


maxv′∈E(v) rv′ if v ∈ V1,

minv′∈E(v) rv′ if v ∈ V2,∑
v′∈E(v) P(v)(v′) · rv′ if v ∈ V♢.

299

Consequences of the Bellman condition. We now see some properties of value vectors r⃗300

that satisfy the Bellman condition. Since boundary vertices are probabilistic vertices, the301

following is immediate.302

▶ Proposition 3. Let r⃗ be a value vector satisfying the Bellman condition. Then for all303

1 ≤ i ≤ k⃗r, for all v ∈ Bnd(R(i)), there exists an out-neighbour of v with r⃗-value less than304

ri and there exists an out-neighbour of v with r⃗-value greater than ri. Formally, there exist305

1 ≤ i1, i2 ≤ k⃗r such that ri1 < ri < ri2 and E(v) ∩ R(i1) ̸= ∅ and E(v) ∩ R(i2) ̸= ∅.306

A corollary of Proposition 3 is that the r⃗-classes with the smallest and the biggest r⃗-values307

have no boundary vertices. Note that there may also exist r⃗-classes other than these that308

do not contain boundary vertices (see R(4) in Example 2). Next, we see that the Bellman309

condition entails that each restriction GR(i) is a stochastic game.310

▶ Proposition 4. If r⃗ is a value vector that satisfies the Bellman condition, then for all311

1 ≤ i ≤ k⃗r, we have that GR(i) is a stochastic game.312

In Proposition 5, we make a crucial observation about long-run behaviours of plays in G,313

which is that either player can ensure with probability 1 that the token eventually reaches an314

r⃗-class from which it does not exit. This follows from the Borel-Cantelli lemma [27] due to the315

fact that there is a positive probability to reach an r⃗-class without boundary vertices following316

a finite number of edges out of boundary vertices.317

▶ Proposition 5. Let r⃗ be a value vector satisfying the Bellman condition. Suppose the318

strategy of Player i (i ∈ {1, 2}) is such that each time the token reaches a vertex v ∈ Vi, (s)he319

moves the token to a vertex v′ in the same r⃗-class as v. Then, with probability 1, the token320

eventually reaches a class R(j) for some 1 ≤ j ≤ k⃗r from which it never exits.321

Finally, we define the notion of trap subgames of GR(i) which will be used in the subsequent
322

discussion. We denote by P 1
R(i) the Player 1 positive attractor set of Bnd(R(i)), i.e., the set

323
of vertices in GR(i) that are positive winning for Player 1 for the Reach(Bnd(R(i))) objective.324

The complement T 1
R(i) = R(i) \P 1

R(i) is a trap for Player 1 in GR(i), and with abuse of notation,
325

we use the same symbol T 1
R(i) to denote the subset of GR(i) as well as the trap subgame. We326

note that if R(i) does not have boundary vertices, that is, if Bnd(R(i)) = ∅, then it holds that327

P 1
R(i) = ∅ and T 1

R(i) = R(i). We can analogously define P 2
R(i) and T 2

R(i) for Player 2. Given328

GR(i), these sets can be computed in polynomial time using attractor computations [29].329

▶ Example 6. We compute these sets for the restrictions shown in Figure 2. For i ∈ {1, 4, 5},330

since Bnd(R(i)) is empty, we have that T 1
R(i) = R(i) and P 1

R(i) = ∅. For R(2), we have that331

P 1
R(2) = R(2), and T 1

R(2) = ∅. For R(3), we have that T 1
R(3) = {v6}, P 1

R(3) = {v7, v8, v9}. ◀332
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3.2 Characterisation of the value vector333

We describe in Theorem 7 a necessary and sufficient set of conditions for a given vector r⃗ to334

be equal to the expected φ-value vector s⃗. In addition to Bellman, Theorem 7 makes use of335

two more conditions, which we define before stating the theorem.336

lower-bound condition: for all 1 ≤ i ≤ k⃗r, Player 1 wins {φ > ri − εφ} almost surely in
337

the trap subgame T 1
R(i) from all vertices in T 1

R(i).338

upper-bound condition: for all 1 ≤ i ≤ k⃗r, Player 2 wins {φ < ri + εφ} almost surely in
339

the trap subgame T 2
R(i) from all vertices in T 2

R(i).340

▶ Theorem 7. The only vector r⃗, whose every component has denominator at most denφ , that341

satisfies Bellman, lower-bound, and upper-bound is the expected φ-value vector s⃗.342

Proof. We show in Lemma 8 that s⃗ satisfies the three conditions. We show in Lemma 9 that343

if r⃗ is a vector that satisfies the three conditions, then r⃗ is less than εφ distance away from s⃗,344

that is, s⃗ − εφ < r⃗ < s⃗ + εφ . In particular, if each component of r⃗ can be written as p
q , where345

p, q are both integers and q is at most denφ , then it follows that r⃗ is equal to s⃗. ◀346

In the rest of the section, we prove Lemmas 8 and 9 used in the proof of Theorem 7.347

▶ Lemma 8. The expected φ-value vector s⃗ satisfies the three conditions in Theorem 7.348

Proof. The fact that s⃗ satisfies Bellman follows directly from Proposition 1. We show that349

lower-bound holds for s⃗. The proof for upper-bound is analogous.350

Suppose for the sake of contradiction that lower-bound does not hold, that is, there351

exists 1 ≤ i ≤ k⃗s and a vertex v in T 1
S(i) such that Player 2 has a positive winning strategy352

from v for the {φ ≤ si − εφ} objective in T 1
S(i). Since {φ ≤ si − εφ} is a prefix-independent353

objective, from [13, Theorem 1] (restated in Appendix B.2) we have that there exists another354

vertex v′ in T 1
S(i) such that Player 2 has an almost-sure winning strategy from v′ for the same355

objective {φ ≤ si − εφ} in T 1
S(i). If Player 2 follows this strategy from v′ in the original game356

G, then one of the following two cases holds357

Player 1 always moves the token to a vertex in S(i). Since v′ is in the trap T 1
S(i) for Player 1358

in GS(i), Player 2 can force the token to remain in T 1
S(i) forever, and follow the almost-sure359

winning strategy to ensure that with probability 1, the outcome satisfies the objective360

{φ ≤ si − εφ}.361

Player 1 eventually moves the token to a vertex out of S(i). Since s⃗ satisfies Bellman, the362

token moves to an s⃗-class with a smaller value than si.363

In both cases, the expected φ-value of the outcome is less than si. This is a contradiction364

since v′ ∈ S(i), and the expected φ-value of every vertex in S(i) is equal to si. ◀365

▶ Lemma 9. If a vector r⃗ satisfies the three conditions in Theorem 7, then s⃗ − εφ < r⃗ < s⃗ + εφ .366

In particular, we have the following:367

If r⃗ satisfies the Bellman and lower-bound conditions, then s⃗ > r⃗ − εφ .368

If r⃗ satisfies the Bellman and upper-bound conditions, then s⃗ < r⃗ + εφ .369

Proof sketch. We prove the first case. The proof for the second case follows by symmetry,370

that is, we essentially replace Player 1 by Player 2, and {φ > ri − εφ} by {φ < ri + εφ}. We371

describe an optimal strategy σ∗
1 of Player 1 and give a sketch of its optimality.372

Since r⃗ satisfies the lower-bound condition, we have that for all 1 ≤ i ≤ k⃗r, Player 1373

has an an almost-sure winning strategy σT
R(i) in the trap subgame T 1

R(i) to win the objective374
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{φ > ri − εφ} in T 1
R(i) almost surely from all vertices in T 1

R(i). From the definition of P 1
R(i),375

Player 1 has a positive winning strategy σP
R(i) in the restricted game GR(i) from vertices in P 1

R(i)376

for the Reach(Bnd(R(i))) objective. By following σP
R(i), the token either reaches Bnd(R(i))377

with positive probability, or ends up in T 1
R(i) from where Player 2 can ensure that the token378

never leaves T 1
R(i). Using these strategies of Player 1 in GR(i), we construct a strategy σ∗

1 of379

Player 1 that is optimal for expected φ-value in the original game G: As long as the token is380

in the class R(i) in G, the strategy σ∗
1 mimics σT

R(i) if the token is in T 1
R(i) and σ∗

1 mimics σP
R(i)381

if the token is in P 1
R(i).382

Note that whenever the token is on a vertex v ∈ V1 in R(i), the strategy σ∗
1 always moves383

the token to a vertex v′ in same r⃗-class R(i) as v (i.e. a token only exits an r⃗-class from a384

Player 2 vertex or from a boundary vertex), and thus, Proposition 5 holds. Whenever the385

token exits a class R(i) to reach a different class R(i′), then as long as the token remains in386

R(i′), the strategy σ∗
1 follows σT

R(i′) if the token is in T 1
R(i′), and σ∗

1 follows σP
R(i′) if the token387

is in P 1
R(i′).388

Since Proposition 5 holds, we have that for all strategies of Player 2, with probability 1,389

the token eventually reaches an r⃗-class R(j) from which it never exits. Moreover, the strategy390

σ∗
1 ensures that with probability 1, the token eventually reaches T 1

R(j) in R(j) from which391

it never leaves. Because if not, then the token would visit vertices in P 1
R(j) infinitely often,392

having a fixed positive probability of reaching Bnd(R(j)) in every step because of σP
R(j). Thus,393

with probability 1, the token would eventually reach Bnd(R(i)) from where it could escape to394

a different r⃗-class, which contradicts the fact that the token stays in R(j) forever.395

Since φ is prefix-independent, the φ-value of a play only depends on the trap T 1
R(j) it396

ends up in. If the game begins from a vertex v ∈ R(i), then for 1 ≤ j ≤ k⃗r, let pj denote the397

probability that the token ends up in the trap subgame T 1
R(j) from which it never exits. Since r⃗398

satisfies Bellman, we have that
∑

j pjrj = ri. Since r⃗ satisfies lower-bound, Player 1 has an399

almost-sure winning strategy for {φ > rj − εφ} in T 1
R(j). Thus, for all strategies σ2 of Player 2,400

the expected value of an outcome of (σ∗
1 , σ2) from v ∈ R(i) is greater than

∑
j pj(rj − εφ),401

which is ri − εφ . This holds for all vertices v in G, giving us the desired result s⃗ > r⃗ − εφ . A402

formal proof is given in Appendix B.5. ◀403

We also note that the optimal strategy σ∗
1 always either follows an almost-sure winning404

strategy σT
R(i) for the threshold objective {φ > ri − εφ} or a positive winning strategy for405

a Reach objective. Since there exist memoryless positive winning strategies for the Reach406

objective [25], we have the following bound on the memory requirement of σ∗
1 .407

▶ Corollary 10. The memory requirement of σ∗
1 is at most the maximum over all 1 ≤ i ≤ k⃗r408

of the memory requirement of an almost-sure winning strategy σT
R(i) for the threshold objective409

{φ > ri − εφ}. Moreover, if σT
R(i) is a deterministic strategy, then so is σ∗

1 .410

3.3 Bounding the denominators in the value vector411

In this section, we discuss the problem of obtaining an upper bound denφ for the denominators412

of the expected φ-values of vertices si for a bounded prefix-independent objective φ in a game413

G. In [21], the technique of value class is used to compute the values of vertices for Boolean414

prefix-independent objectives. It is stated without proof that the probability of satisfaction of415

a parity or a Streett objective [2] from each vertex can be written as p
q where q ≤ (P̂)4·|E| and416

P̂ is the maximum denominator over all edge probabilities in the game. As such, we were not417

able to directly generalise this bound for the expectation of quantitative prefix-independent418

objectives. Instead, we make the following observations:419
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Let S(i) be an s⃗-class without boundary vertices. If the token is in S(i) at some point in420

the play, then since s⃗ satisfies the Bellman condition, neither player has an incentive to421

move the token out of S(i). Since there are no boundary vertices in S(i), the token does422

not exit S(i) from a probabilistic vertex either, and remains in S(i) forever. Thus, the value423

si of S(i) depends only on the internal structure of S(i). We denote by denφ an upper424

bound on the denominators of values of s⃗-classes without boundary vertices. It is a simpler425

problem to find denφ than to find denφ , as each class without boundary vertices can be426

treated as a subgame in which each vertex has the same expected φ-value, or equivalently,427

the subgame consists of exactly one s⃗-class.428

On the other hand, suppose S(i) is an s⃗-class containing at least one boundary vertex,429

and let v be a boundary vertex in S(i). Then, since s⃗ satisfies the Bellman condition, we430

have sv =
∑

v′∈E(v) P(v)(v′) · sv′ , which is also the value si of S(i). Thus, si can be written431

in terms of the values of classes reachable from v in one step and the probabilities with432

which those classes are reached. In fact, we construct in the proof of Theorem 11 a system433

of linear equations to show that the value of each s⃗-class with boundary vertices can be434

expressed solely in terms of transition probabilities of the outgoing edges from boundary435

vertices and values of s⃗-classes without boundary vertices.436

The method to calculate denφ depends on the specific objective; we illustrate as an example in437

Section 4 a way to obtain denφ for a particular kind of objective called the window mean-payoff438

objective. Once we know denφ for an objective φ, we can use Theorem 11 to obtain denφ in439

terms of denφ .440

▶ Theorem 11. The denominator of the value of each s⃗-class in G is at most denφ =441

2|V | · P̂|V |3 · (denφ)|V |.442

We note that this theorem implies that the number of bits required to write denφ is polynomial443

in the number of vertices in the game and in the number of bits required to write denφ . We444

devote the rest of this section to the proof of Theorem 11. For ease of notation, we denote445

the number of s⃗-classes in the game by k instead of k⃗s for the rest of this section. If every446

s⃗-class has no boundary vertices, then we have denφ equal to denφ and we are done. So we447

assume there exists at least one class that contains boundary vertices. Let m ≥ 1 denote the448

number of s⃗-classes with boundary vertices, and therefore, there are k −m s⃗-classes without449

boundary vertices. Since there always exists at least one s⃗-class without boundary vertices450

(Proposition 3), we have that m < k. Let B = {1, 2, . . . ,m} and C = {m + 1, . . . , k}. We451

index the s⃗-classes such that each class with boundary vertices has its index in B and each452

class without boundary vertices has its index in C. Furthermore, in the sets B and C, the453

classes are indexed in increasing order of their values. That is, for i, j both in B or both in454

C, we have i < j if and only if si < sj . We show bounds on the denominators of s⃗-values of455

classes with boundary vertices, i.e., s1, . . . , sm in terms of s⃗-values of classes without boundary456

vertices, i.e., sm+1, . . . , sk.457

For all i ∈ B = {1, 2, . . . ,m}, pick an arbitrary boundary vertex from Bnd(S(i)) and call458

this the representative vertex ui of Bnd(S(i)). For all i ∈ B and j ∈ {1, 2, . . . , k}, let pi,j459

denote the probability of reaching the class S(j) from ui in one step. Since s⃗ satisfies the460

Bellman condition, we have that
∑

1≤j≤k pi,j · sj = si. It is helpful to split this sum based on461

whether j ∈ B or j ∈ C, i.e., whether 1 ≤ j ≤ m or m+ 1 ≤ j ≤ k. We rewrite the sums as462 ∑
j∈B pi,jsj +

∑
j∈C pi,jsj = si for all i ∈ B, and we represent this system of equations below463

using matrices.464 
p1,1 p1,2 · · · p1,m

p2,1 p2,2 · · · p2,m

...
...

. . .
...

pm,1 pm,2 · · · pm,m




s1
s2
...
sm

 +


p1,m+1 p1,m+2 · · · p1,k

p2,m+1 p2,m+2 · · · p2,k

...
...

. . .
...

pm,m+1 pm,m+2 · · · pm,k



sm+1
sm+2

...
sk

 =


s1
s2
...
sm

465
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This system of equations is of the form QBsB + QCsC = sB. Rearranging terms gives us466

(I − QB)sB = QCsC where I is the m × m identity matrix. It follows from Proposition 12467

that the equation (I −QB)sB = QCsC has a unique solution.468

▶ Proposition 12. The matrix (I −QB) is invertible.469

Let α denote the least common multiple (lcm) of the denominators of pi,j for 1 ≤ i ≤ m470

and 1 ≤ j ≤ k. We have 0 < α ≤ P̂mk, where P̂ is the maximum denominator over all471

edge probabilities in G. We multiply both sides of the equation (I − QB)sB = QcsC by α472

to get α(I − QB)sB = αQCsC and note that all the elements of α(I − QB) and αQC are473

integers. Let D be the determinant of the matrix α(I −QB), and for 1 ≤ i ≤ m, let Ni be the474

determinant of the matrix obtained by replacing the ith column of α(I −QB) with the column475

vector αQCsC . Since α(I −QB) is invertible, by Cramer’s rule [37], we have that si = Ni/D.476

Proposition 13 shows that |D| is an integer and is at most (2α)m and Proposition 14 shows477

that Ni has denominator at most (denφ)k−m.478

▶ Proposition 13. The absolute value of the determinant of α(I−QB), i.e., |D|, is an integer479

and is at most (2α)m, which is at most 2|V | · P̂|V |3 .480

▶ Proposition 14. The denominator of Ni is at most (denφ)k−m, which is at most (denφ)|V |.481

Since the denominator of si is at most |D| times the denominator of Ni, we obtain the482

bound stated in Theorem 11. ◀483

4 Expectation of window mean-payoff objectives484

In this section, we apply the results from the previous section for two types of window mean-485

payoff objectives introduced in [16]: (i) fixed window mean-payoff (FWMP(ℓ)) in which a486

window length ℓ ≥ 1 is given, and (ii) bounded window mean-payoff (BWMP) in which for487

every play, we need a bound on window lengths. We define these objectives below.488

For a play π in a stochastic game G, the mean payoff of an infix π(i, i+n) is the average of489

the payoffs of the edges in the infix and is defined as MP(π(i, i+ n)) =
∑i+n−1

k=i
1
nw(vk, vk+1).490

Given a window length ℓ ≥ 1 and a threshold λ ∈ R, a play π = v0v1 · · · in G satisfies the491

fixed window mean-payoff objective FWMPG(ℓ, λ) if from every position after some point, it is492

possible to start an infix of length at most ℓ with mean payoff at least λ.493

FWMPG(ℓ, λ) = {π ∈ PlaysG | ∃k ≥ 0 · ∀i ≥ k · ∃j ∈ {1, . . . , ℓ} : MP(π(i, i+ j)) ≥ λ}494

We omit the subscript G when it is clear from the context. We extend the definition of windows495

as defined in [16] for arbitrary thresholds. Given a threshold λ, a play π = v0v1 · · ·, and496

0 ≤ i < j, we say that the λ-window π(i, j) is open if the mean payoff of π(i, k) is less than λ497

for all i < k ≤ j. Otherwise, the λ-window is closed. A play π satisfies FWMP(ℓ, λ) if and498

only if from some point on, every λ-window in π closes within at most ℓ steps. Note that499

FWMP(ℓ, λ) ⊆ FWMP(ℓ′, λ) for ℓ ≤ ℓ′ as a smaller window length is a stronger constraint.500

We also consider another window mean-payoff objective called the bounded window mean-501

payoff objective BWMPG(λ). A play satisfies the objective BWMP(λ) if there exists a window502

length ℓ ≥ 1 such that the play satisfies FWMP(ℓ, λ).503

BWMPG(λ) = {π ∈ PlaysG | ∃ℓ ≥ 1 : π ∈ FWMPG(ℓ, λ)}504

Note that both FWMP(ℓ, λ) and BWMP(λ) are Boolean prefix-independent objectives.505
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Expected window mean-payoff values. Corresponding to the Boolean objectives FWMP(ℓ, λ)506

and BWMP(λ), we define quantitative versions of these objectives. Given a play π in a stochastic507

game G and a window length ℓ, the φFWMP(ℓ)-value of π is sup{λ ∈ R | π ∈ FWMPG(ℓ, λ)},508

the supremum threshold λ such that the play satisfies FWMPG(ℓ, λ). Using notations from509

Section 2, we denote the expected φFWMP(ℓ)-value of a vertex v by Ev(φFWMP(ℓ)). We define510

Ev(φBWMP), the expected φBWMP-value of a vertex v analogously. If W is an integer such that511

the payoff w(e) of each edge e in G satisfies |w(e)| ≤ W, then for all plays π in G, we have512

that φFWMP(ℓ)(π) and φBWMP(π) lie between −W and W. Thus, φFWMP(ℓ) and φBWMP are513

bounded objectives.514

Decision problems. Given a stochastic game G, a vertex v, and a threshold λ ∈ Q, we have515

the following expectation problems for the window mean-payoff objectives:516

expected φFWMP(ℓ)-value problem: Given a window length ℓ ≥ 1, is Ev(φFWMP(ℓ)) ≥ λ?517

expected φBWMP-value problem: Is Ev(φBWMP) ≥ λ?518

As considered in previous works [8,11,16], the window length ℓ is usually small (ℓ ≤ |V |), and519

hence we assume that ℓ is given in unary (while the edge-payoffs are given in binary).520

4.1 Expected fixed window mean-payoff value521

We give tight complexity bounds for the expected φFWMP(ℓ)-value problem. We use the522

characterisation from Theorem 7 to present our main result that this problem is in UP ∩523

coUP (Theorem 18). We show in Appendix D.1 that simple stochastic games [25], which are524

known to be in UP ∩ coUP [17], reduce to the expected φFWMP(ℓ)-value problem, giving a tight525

lower bound.526

In order to use the characterisation, we show the existence of the bound denFWMP(ℓ) for the527

φFWMP(ℓ) objective. We show in Lemma 15 that the expected φFWMP(ℓ)-value si of a class S(i)528

without boundary vertices takes a special form, that is, si is the mean-payoff of a sequence of529

at most ℓ edges in S(i).530

▶ Lemma 15. The expected φFWMP(ℓ)-value si of vertices in a class S(i) without boundary531

vertices is equal to the mean payoff of some sequence of ℓ or fewer edges in S(i). That is, si is532

of the form 1
j (w(e1) + · · · + w(ej)) for some j ≤ ℓ and edges e1, e2, . . . , ej.533

This observation gives us the bound denFWMP(ℓ) on the denominators of the values of534

s⃗-classes without boundary vertices. To see this, let ŵ = max{q | ∃p, q ∈ Z, ∃e ∈ E :535

w(e) = p
q with p, q co-prime} be the maximum denominator over all edge-payoffs in G. Since536

j ≤ ℓ, and each w(e1), w(e2), . . . , w(ej) is a rational number with denominator at most ŵ, the537

denominator of the sum w(e1) + · · · +w(ej) is at most ŵ · (ŵ − 1) · (ŵ − 2) · · · (ŵ − (ℓ− 1)) if538

ŵ ≥ ℓ, and at most ŵ! if ŵ ≤ ℓ. In both cases, this is at most ŵℓ.539

▶ Corollary 16. The expected φFWMP(ℓ)-value of vertices in s⃗-classes without boundary vertices540

can be written as p
q where p and q are integers and q ≤ ŵℓ · ℓ.541

From Theorem 11, we get that the denominator of si for each class S(i) in G is at most542

2|V | · P̂|V |3 · (denFWMP(ℓ))|V |, which is at most 2|V | · P̂|V |3 · (ŵℓ · ℓ)|V |.543

▶ Lemma 17. The expected φFWMP(ℓ)-value of each vertex in G can be written as a fraction544

p
q , where p, q are integers, and q ≤ 2|V | · P̂|V |3 · (ŵℓ · ℓ)|V |, and −W · q ≤ p ≤ W · q.545

We now state the main result of this section for the expected φFWMP(ℓ)-value problem.546

▶ Theorem 18. The expected φFWMP(ℓ)-value problem is in UP ∩ coUP when ℓ is given in547

unary. Memory of size ℓ suffices for Player 1, while memory of size |V | · ℓ suffices for Player 2.548
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Proof. To show membership of the expected φFWMP(ℓ)-value problem in UP ∩ coUP, we first549

guess the expected φFWMP(ℓ)-value vector s⃗, that is, the expected φFWMP(ℓ)-value sv of every550

vertex v in the game. From Lemma 17, it follows that the number of bits required to write sv551

for every vertex v is polynomial in the size of the input. Thus, the vector s⃗ can be guessed in552

polynomial time.553

Then, to verify the guess, it is sufficient to verify the Bellman, lower-bound, and554

upper-bound conditions for φFWMP(ℓ). It is easy to see that the Bellman condition can555

be checked in polynomial time. Checking the lower-bound and upper-bound conditions,556

i.e., checking the almost-sure satisfaction of the threshold Boolean objective FWMP(ℓ, λ) for557

appropriate thresholds λ in trap subgames in each s⃗-class can be done in polynomial time [26].558

Thus, the decision problem of Ev(φFWMP(ℓ)) ≥ λ is in NP, and moreover, since there is exactly559

one value vector that satisfies the conditions in Theorem 7, the decision problem is, in fact, in560

UP. Analogously, the complement decision problem of Ev(φFWMP(ℓ)) < λ is also in UP. Hence,561

the expected φFWMP(ℓ)-value problem is in UP ∩ coUP.562

From the description of the optimal strategy in Lemma 9, it follows from Corollary 10 that563

the memory requirement for the expected φFWMP(ℓ) objective is no greater than the memory564

requirement for the almost-sure satisfaction of the corresponding threshold objectives, which565

are ℓ and |V | · ℓ for Player 1 and Player 2 respectively [26]. ◀566

4.2 Expected bounded window mean-payoff value567

We would like to apply the characterisation in Theorem 7 to φBWMP to show that the expected568

φBWMP-value problem is in UP ∩ coUP, and thus, we show the existence of the bound denBWMP569

for the φBWMP objective. We show in Lemma 19 that the expected φBWMP-value si of a class570

S(i) without boundary vertices is the mean payoff of a simple cycle in S(i).571

▶ Lemma 19. The expected φBWMP-value si of vertices in a class S(i) without boundary572

vertices is equal to the mean-payoff value of a simple cycle in S(i). That is, si is of the form573

1
j (w(e1) + · · · + w(ej)) for some j ≤ |V | and edges e1, e2, . . . , ej of a simple cycle.574

While Lemma 19 is analogous to Lemma 15 for φFWMP(ℓ), the proof of Lemma 19 is more575

involved since the φBWMP objective requires one to consider windows of arbitrary lengths.576

In the proof, we make use of the fact that memoryless strategies suffice for Player 1 to play577

optimally for the almost-sure satisfaction of the BWMP objective [26]. In the resulting MDP578

(which has the same set of vertices as the game GS(i)), we carefully analyse the resulting plays579

when Player 2 plays optimally. The formal proof appears in Appendix E.1. The following580

corollary of Lemma 19 states the bound denBWMP.581

▶ Corollary 20. The expected φBWMP-value of vertices in s⃗-classes without boundary vertices582

can be written as p
q where p and q are integers and q ≤ ŵ|V | · |V |.583

From Theorem 11, we get that the denominator of si of each class S(i) in G is at most584

2|V | · P̂|V |3 · (denBWMP)|V |, which is at most 2|V | · P̂|V |3 · (ŵ|V | · |V |)|V |.585

▶ Lemma 21. The expected φBWMP-value of each vertex in G can be written as p
q , where p, q586

are integers, and q ≤ 2|V | · P̂|V |3 · (ŵ|V | · |V |)|V |, and −W · q ≤ p ≤ W · q.587

We now state the main result of this section for the expected φBWMP-value problem.588

▶ Theorem 22. The expected φBWMP-value problem is in UP ∩ coUP. Memoryless strategies589

suffice for Player 1. Player 2 requires infinite memory in general.590

Proof sketch. This proof follows a similar structure as the proof of Theorem 18. As before,591

the Bellman condition can be checked in polynomial time. Checking the lower-bound and592
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upper-bound conditions involves checking almost-sure satisfaction of the Boolean objective593

BWMP for appropriate thresholds, which reduces to checking the satisfaction of BWMP in594

non-stochastic games [26], which in turn reduces to total supremum payoff [16], which is595

in UP ∩ coUP [31]. Both of these reductions are polynomial-time reduction, and hence, the596

expected φBWMP-value problem is in UP ∩ coUP.597

Memoryless strategies suffice for Player 1 for almost-sure satisfaction of BWMP(λ) [26].598

Player 2 requires infinite memory in general for the BWMP(λ) objective even in non-stochastic599

games [16], which are a special case of stochastic games. Deterministic strategies suffice for600

both players. Hence, we get the memory requirements of an optimal strategy for the expected601

φBWMP-value problem using Corollary 10. ◀602

5 Discussion603

We discuss some concluding remarks about the relation of our work to previous work [21],604

which deals with the satisfaction of Boolean prefix-independent objectives. We also discuss605

practical implementations for window mean-payoff objectives.606

Comparison with [21]. In [21], it suffices to check the almost-sure satisfaction of the same607

Boolean objective ψ in all value classes. In contrast, for quantitative objectives, the threshold608

Boolean objective for which we check the almost-sure satisfaction depends on the guessed609

value of the value class (“Can Player 1 satisfy {φ > ri − εφ} with probability 1?”). Another610

key difference is that for Boolean objectives, the value classes without boundary vertices611

are precisely the extremal value classes, that is classes with values 0 and 1. In the case of612

quantitative objectives, there may be multiple intermediate value classes without boundary613

vertices, making reasoning about the correctness of the reduction more difficult.614

We note that if we apply our approach to Boolean prefix-independent objectives (such as615

Büchi, coBüchi, parity) by viewing them as quantitative objectives mapping each play to 0 or616

1, then we recover the algorithm given in [21].617

Practical implementation. We discuss approaches to solve the expected φ-value problem618

for the window mean-payoff objectives in practice.619

A trivial algorithm that works for both φFWMP(ℓ) and φBWMP objectives is to iterate over620

all possible value vectors. For each value vector, we check if the conditions in Theorem 7 are621

satisfied, which can be done in polynomial time. Since there are exponentially many possible622

value vectors, this algorithm has an exponential running time in the worst-case.623

Another technique is value iteration [19], which has been seen to be an anytime algorithm624

for the standard mean-payoff objective [39]. An anytime algorithm gives better precision the625

longer it is run, and can be interrupted any time. Given a game G with |V | vertices, the626

expected φFWMP(ℓ)-value problem on G reduces to the expected liminf-value problem on a game627

G′ with |V |ℓ vertices, (that is, on an exponentially larger game graph). The liminf objective is628

a well-studied objective in the context of value iteration [15, 19]. We describe the reduction in629

Appendix D.2, which also gives the expected φFWMP(ℓ)-values of vertices in G.630

Since the size of the graph G′ is much bigger than that of G, we would like to work with631

G′ on-the-fly rather than explicitly constructing the entire graph. In [39], the authors show632

bounded value iteration for objectives such as reachability and mean-payoff. They also discuss633

that the algorithm can be extended to be asynchronous and use partial exploration. As future634

work, we would like to look at the practicality of on-demand asynchronous value iteration for635

the liminf objective, or even the window mean-payoff objectives φFWMP(ℓ) and φBWMP directly.636

An interesting aspect of it would be to investigate heuristics and optimisations such as sound637

value iteration [42], optimistic value iteration [36], and topological value iteration [5] to speed638

up the practical running time.639



16 Expectation in Stochastic Games with Prefix-independent Objectives

References640

1 D. Andersson and P. B. Miltersen. The Complexity of Solving Stochastic Games on Graphs.641

In ISAAC, volume 5878 of Lecture Notes in Computer Science, pages 112–121. Springer, 2009.642

doi:10.1007/978-3-642-10631-6_13.643

2 K. R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists. Cambridge644

University Press, 2011.645

3 P. Ashok, K. Chatterjee, P. Daca, J. Křetínský, and T. Meggendorfer. Value Iteration for646

Long-Run Average Reward in Markov Decision Processes. In CAV, pages 201–221. Springer,647

2017. doi:10.1007/978-3-319-63387-9_10.648

4 P. Ashok, J. Křetínský, and M. Weininger. PAC Statistical Model Checking for Markov649

Decision Processes and Stochastic Games. In CAV, pages 497–519. Springer, 2019. doi:650

10.1007/978-3-030-25540-4_29.651

5 M. Azeem, A. Evangelidis, J. Křetínský, A. Slivinskiy, and M. Weininger. Optimistic and652

Topological Value Iteration for Simple Stochastic Games. In ATVA, pages 285–302. Springer,653

2022. doi:10.1007/978-3-031-19992-9_18.654

6 C. Baier and J-P. Katoen. Principles of model checking. MIT Press, 2008.655

7 P. Billingsley. Probability and Measure. John Wiley and Sons, second edition, 1986.656

8 B. Bordais, S. Guha, and J-F. Raskin. Expected Window Mean-Payoff. In FSTTCS, volume657

150 of LIPIcs, pages 32:1–32:15, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.32.658

9 T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two Views on Multiple659

Mean-Payoff Objectives in Markov Decision Processes. Logical Methods in Computer Science,660

10(1), 2014. doi:10.23638/LMCS-13(2:15)2017.661

10 T. Brázdil, K. Chatterjee, M. Chmelík, V. Forejt, J. Křetínský, M. Kwiatkowska, D. Parker,662

and M. Ujma. Verification of Markov Decision Processes Using Learning Algorithms. In ATVA,663

pages 98–114. Springer, 2014. doi:10.1007/978-3-319-11936-6_8.664

11 T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour. Life is Random, Time is Not: Markov665

Decision Processes with Window Objectives. Logical Methods in Computer Science, Volume 16,666

Issue 4, Dec 2020. doi:10.23638/LMCS-16(4:13)2020.667

12 V. Bruyère, E. Filiot, M. Randour, and J-F. Raskin. Meet your expectations with guarantees:668

Beyond worst-case synthesis in quantitative games. Information and Computation, 254:259–295,669

2017. doi:10.1016/j.ic.2016.10.011.670

13 K. Chatterjee. Concurrent games with tail objectives. Theoretical Computer Science, 388(1):181–671

198, 2007. doi:10.1016/j.tcs.2007.07.047.672

14 K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger. Randomness for free. Information673

and Computation, 245:3–16, 2015. doi:10.1016/j.ic.2015.06.003.674

15 K. Chatterjee, L. Doyen, and T. A. Henzinger. A Survey of Stochastic Games with Limsup675

and Liminf Objectives. In Automata, Languages and Programming, pages 1–15. Springer, 2009.676

doi:10.1007/978-3-642-02930-1_1.677

16 K. Chatterjee, L. Doyen, M. Randour, and J-F. Raskin. Looking at mean-payoff and total-payoff678

through windows. Information and Computation, 242:25–52, 2015. doi:10.1016/j.ic.2015.679

03.010.680

17 K. Chatterjee and N. Fijalkow. A reduction from parity games to simple stochastic games.681

EPTCS, 54:74–86, 2011. doi:10.4204/eptcs.54.6.682

18 K. Chatterjee and T. A. Henzinger. Reduction of stochastic parity to stochastic mean-payoff683

games. Information Processing Letters, 106(1):1–7, 2008. doi:10.1016/j.ipl.2007.08.035.684

19 K. Chatterjee and T. A. Henzinger. Value Iteration. In 25 Years of Model Checking685

- History, Achievements, Perspectives, LNCS 5000, pages 107–138. Springer, 2008. doi:686

10.1007/978-3-540-69850-0_7.687

20 K. Chatterjee and T. A. Henzinger. Probabilistic Systems with LimSup and LimInf Ob-688

jectives. In Infinity in Logic and Computation, pages 32–45. Springer, 2009. doi:10.1007/689

978-3-642-03092-5_4.690

21 K. Chatterjee, T. A. Henzinger, and F. Horn. Stochastic Games with Finitary Objectives. In691

MFCS, pages 34–54. Springer, 2009. doi:10.1007/978-3-642-03816-7_4.692

https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-031-19992-9_18
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.32
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.23638/LMCS-16(4:13)2020
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.1016/j.tcs.2007.07.047
https://doi.org/10.1016/j.ic.2015.06.003
https://doi.org/10.1007/978-3-642-02930-1_1
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.4204/eptcs.54.6
https://doi.org/10.1016/j.ipl.2007.08.035
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-642-03092-5_4
https://doi.org/10.1007/978-3-642-03092-5_4
https://doi.org/10.1007/978-3-642-03092-5_4
https://doi.org/10.1007/978-3-642-03816-7_4


L. Doyen, P. Gaba, and S. Guha 17

22 K. Chatterjee, Z. Křetínská, and J. Křetínský. Unifying Two Views on Multiple Mean-Payoff693

Objectives in Markov Decision Processes. Logical Methods in Computer Science, Volume 13,694

Issue 2, Jul 2017. doi:10.23638/LMCS-13(2:15)2017.695

23 K. Chatterjee, T. Meggendorfer, R. Saona, and J. Svoboda. Faster Algorithm for Turn-696

based Stochastic Games with Bounded Treewidth. In SODA, pages 4590–4605, 2023. doi:697

10.1137/1.9781611977554.ch173.698

24 A. Church. Application of Recursive Arithmetic to the Problem of Circuit Synthesis. Journal699

of Symbolic Logic, 28(4):289–290, 1963. doi:10.2307/2271310.700

25 A. Condon. The complexity of stochastic games. Information and Computation, 96(2):203–224,701

1992. doi:10.1016/0890-5401(92)90048-K.702

26 L. Doyen, P. Gaba, and S. Guha. Stochastic Window Mean-payoff Games. In FoSSaCS Part I,703

volume 14574 of LNCS, pages 34–54. Springer, 2024. doi:10.1007/978-3-031-57228-9_3.704

27 R. Durrett. Probability: Theory and Examples. Cambridge University Press, 2010.705

28 A. Ehrenfeucht and J. Mycielski. Positional Strategies for Mean Payoff Games. Int. Journal of706

Game Theory, 8(2):109–113, 1979. doi:10.1007/BF01768705.707

29 N. Fijalkow, N. Bertrand, P. Bouyer, R. Brenguier, A. Carayol, J. Fearnley, H. Gimbert, F. Horn,708

R. Ibsen-Jensen, N. Markey, B. Monmege, P. Novotny, M. Randour, O. Sankur, S. Schmitz,709

O. Serre, and M. Skomra. Games on Graphs. 2024. To be published by Cambridge University710

Press in 2024. doi:10.48550/arXiv.2305.10546.711

30 P. Gaba and S. Guha. Optimising expectation with guarantees for window mean payoff in712

Markov decision processes. In AAMAS. International Foundation for Autonomous Agents and713

Multiagent Systems / ACM, to appear, 2025.714

31 T. M. Gawlitza and H. Seidl. Games through Nested Fixpoints. In CAV, pages 291–305.715

Springer, 2009. doi:10.1007/978-3-642-02658-4_24.716

32 D. Gillette. Stochastic games with zero stop probabilities, page 179–188. Princeton University717

Press, Dec 1958.718

33 H. Gimbert and E. Kelmendi. Submixing and Shift-Invariant Stochastic Games. International719

Journal of Game Theory, 52(4):1179–1214, 2023. doi:10.1007/s00182-023-00860-5.720

34 V. Gurvich and P. B. Miltersen. On the Computational Complexity of Solving Stochastic721

Mean-Payoff Games. CoRR, abs/0812.0486, 2008.722

35 S. Haddad and B. Monmege. Interval Iteration Algorithm for MDPs and IMDPs. Theoretical723

Computer Science, 735:111–131, 2018. Reachability Problems 2014: Special Issue. doi:10.724

1016/j.tcs.2016.12.003.725

36 A. Hartmanns and B. L. Kaminski. Optimistic Value Iteration. In CAV, pages 488–511. Springer,726

2020. doi:10.1007/978-3-030-53291-8_26.727

37 K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, Inc., 1971.728

38 J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.729

Addison-Wesley Publishing Co., Inc., 1979.730

39 J. Křetínský, T. Meggendorfer, and M. Weininger. Stopping Criteria for Value Iteration on731

Stochastic Games with Quantitative Objectives. In LICS, pages 1–14, 2023. doi:10.1109/732

LICS56636.2023.10175771.733

40 D. A. Martin. The Determinacy of Blackwell Games. The Journal of Symbolic Logic, 63(4):1565–734

1581, 1998. doi:10.2307/2586667.735

41 M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John736

Wiley and Sons, 1994.737

42 T. Quatmann and J-P. Katoen. Sound Value Iteration. In CAV, pages 643–661. Springer, 2018.738

doi:10.1007/978-3-319-96145-3_37.739

43 L. S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences,740

39(10):1095–1100, Oct 1953. doi:10.1073/pnas.39.10.1095.741

44 U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on Graphs. Theoretical742

Computer Science, 158(1&2):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.743

https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.1137/1.9781611977554.ch173
https://doi.org/10.1137/1.9781611977554.ch173
https://doi.org/10.1137/1.9781611977554.ch173
https://doi.org/10.2307/2271310
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1007/978-3-031-57228-9_3
https://doi.org/10.1007/BF01768705
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.1007/978-3-642-02658-4_24
https://doi.org/10.1007/s00182-023-00860-5
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1109/LICS56636.2023.10175771
https://doi.org/10.1109/LICS56636.2023.10175771
https://doi.org/10.1109/LICS56636.2023.10175771
https://doi.org/10.2307/2586667
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1016/0304-3975(95)00188-3


18 Expectation in Stochastic Games with Prefix-independent Objectives

A Further Preliminaries744

A.1 More definitions745

One-player games. A stochastic game with V1 = V♢ = ∅ or V2 = V♢ = ∅ is called a746

non-stochastic one-player game.747

Common Boolean objectives. We denote by occ(π) the set of vertices in V that occur at748

least once in π, and by inf(π) the set of vertices in V that occur infinitely often in π. Given749

T ⊆ V , define the following objectives:750

the reachability objective ReachG(T ) = {π ∈ PlaysG | T ∩ occ(π) ̸= ∅}, the set of all plays751

that visit a vertex in T ,752

the dual safety objective SafeG(T ) = {π ∈ PlaysG | occ(π) ⊆ T}, the set of all plays that753

never visit a vertex outside T ,754

the Büchi objective BüchiG(T ) = {π ∈ PlaysG | T ∩ inf(π) ̸= ∅}, the set of all plays that755

visit a vertex in T infinitely often, and756

the dual coBüchi objective coBüchiG(T ) = {π ∈ PlaysG | inf(π) ⊆ T}, the set of all plays757

that eventually only visit vertices in T .758

Strategy defined by a Mealy machine. A Mealy machine is a deterministic transition759

system with transitions labelled by input/output pairs. Formally, a Mealy machine M is760

a tuple (Q, q0,Σi,Σo,∆, δ) where Q is the set of states of M (the memory of the induced761

strategy), q0 ∈ Q is the initial state, Σi is the input alphabet, Σo is the output alphabet,762

∆: Q× Σi → Q is a transition function that reads the current state of M and an input letter763

and returns the next state of M , and δ : Q× Σi → Σo is an output function that reads the764

current state of M and an input letter and returns an output letter. The transition function ∆765

can be extended to a function ∆̂ : Q×Σ+
i → Q that reads words and can be defined inductively766

by ∆̂(q, a) = ∆(q, a) and ∆̂(q, x · a) = ∆(∆̂(q, x), a), for q ∈ Q, x ∈ Σ+
i , and a ∈ Σi. The767

output function δ can be also be similarly extended to a function δ̂ : Q× Σ+
i → Σo on words768

and can be defined inductively by δ̂(q, a) = δ(q, a) and δ̂(q, x · a) = δ(∆̂(q, x), a), for q ∈ Q,769

x ∈ Σ+
i , and a ∈ Σi.770

A player’s strategy can be defined by a Mealy machine whose input and output alphabets771

are V and V ∪ {ϵ} respectively. For i ∈ {1, 2}, a strategy σi of Player i can be defined by772

a Mealy machine (Q, q0, V, V ∪ {ϵ},∆, δ) as follows: Given a prefix ρ ∈ Prefsi
G ending in a773

Player i vertex, the strategy σi defined by a Mealy machine is σi(ρ) = δ̂(q0, ρ). Intuitively, in774

each turn, if the token is on a vertex v that belongs to Player i for i ∈ {1, 2}, then v is given775

as input to the Mealy machine, and the Mealy machine outputs the successor vertex of v that776

Player i must choose. Otherwise, the token is on a vertex v that either belongs to Player i’s777

opponent or is a probabilistic vertex, in which case, the Mealy machine outputs the symbol ϵ778

to denote that Player i cannot decide the successor vertex of v. Memoryless strategies can be779

defined by Mealy machines with only one state.780

Subgames and subMDPs. Given a stochastic game G = ((V,E), (V1, V2, V♢),P, w), a subset781

V ′ ⊆ V of vertices induces a subgame if (i) every vertex v′ ∈ V ′ has an outgoing edge in V ′,782

that is E(v′) ∩ V ′ ̸= ∅, and (ii) every probabilistic vertex v′ ∈ V♢ ∩ V ′ has all outgoing edges783

in V ′, that is E(v′) ⊆ V ′. The induced subgame is ((V ′, E′), (V1 ∩V ′, V2 ∩V ′, V♢ ∩V ′),P′, w′),784

where E′ = E ∩ (V ′ × V ′), and P′ and w′ are restrictions of P and w respectively to (V ′, E′).785

Let φ be an objective in the stochastic game G. We define the restriction of φ to a subgame G′
786

of G to be the set of all plays in G′ satisfying φ, that is, the set PlaysG′ ∩ φ. If G is an MDP,787

then a subgame G′ of G is also an MDP, and is called a subMDP of G.788
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Probability measure over plays. The cone at ρ is the set Cone(ρ) = {π ∈ PlaysG |789

ρ is a prefix of π}, the set of all plays having ρ as a prefix. First, we define this probability790

measure over cones inductively as follows. If |ρ| = 0, then ρ is just a vertex v0, and791

Prσ1,σ2
G,v (Cone(ρ)) is 1 if v = v0, and 0 otherwise. For the inductive case |ρ| > 0, there exist792

ρ′ ∈ PrefsG and v′ ∈ V such that ρ = ρ′ · v′, and we have Prσ1,σ2
G,v (Cone(ρ′ · v′)) given by the793

following:794 
Prσ1,σ2

G,v (Cone(ρ′)) · P(Last(ρ′))(v′) if Last(ρ′) ∈ V♢,

Prσ1,σ2
G,v (Cone(ρ′)) if Last(ρ′) ∈ Vi

and σi(ρ′) = v′,

0 otherwise.

795

It is sufficient to define Prσ1,σ2
G,v (φ) on cones in G since a measure defined on cones extends to796

a unique measure on PlaysG by Carathéodory’s extension theorem [7].797

For a Boolean objective ψ, we denote by Prσ1,σ2
G,ρ (ψ) the probability that an outcome of798

the profile (σ1, σ2) in G with initial prefix ρ satisfies ψ. Similarly, we also define Eσ
ρ (φ), the799

expected φ-value of an outcome of the strategy profile σ following a prefix ρ.800

Maximal end components (MECs). Let G = ((V,E), (V1,∅, V♢),P, w) be an MDP. Given801

a subset V ′ ⊆ V of vertices, the subMDP G′ of G induced by V ′ is an end component of G802

if there exists a strategy σ1 such that for all vertices v, v′ in the subgame G′, we have that803

v′ is almost surely reachable from v in G′. Intuitively, if the token is in an end component804

G′, then Player 1 has a strategy such that, with probability 1, the token never leaves the end805

component and every vertex is reachable from every other vertex in the end component. An806

end component that is not contained in any other end component is called a maximal end807

component (MEC).808

MECs have traditionally been defined for MDPs only. Recent works such as [4] have exten-809

ded the definition of MECs to stochastic games in general. Let G = ((V,E), (V1, V2, V♢),P, w)810

be a stochastic game. Given a subset V ′ ⊆ V of vertices, the subgame G′ of G induced by V ′
811

is an end component of G if there exists a strategy profile (σ1, σ2) such that for all vertices v,812

v′ in the subgame G′, we have that v′ is almost surely reachable from v in G′. In other words,813

if the players cooperate, then they can ensure that once the token enters an end component,814

then it never leaves the end component, and that every vertex is reachable from every other815

vertex in the end component. Equivalently, the subgame G′ of G induced by V ′ is an end816

component of G if, in the MDP GMDP = ((V,E), (V1 ∪ V2,∅, V♢),P, w) obtained by replacing817

all Player 2 vertices in G by Player 1 vertices, the subMDP G′
MDP of GMDP induced by V ′ is818

an end component of GMDP (in the sense of an end component of an MDP).819

A.2 Proof of Proposition 1820

▶ Proposition 1 (Bellman equations). If φ is a prefix-independent objective, then the following821

equations hold for all v ∈ V .822

Ev(φ) =


maxv′∈E(v) Ev′(φ) if v ∈ V1

minv′∈E(v) Ev′(φ) if v ∈ V2∑
v′∈E(v) P(v)(v′) · Ev′(φ) if v ∈ V♢

823

Proof. First, we show these equations hold for every probabilistic vertex v ∈ V♢. For every824

strategy profile σ, we have that Eσ
v (φ) =

∑
v′∈E(v) P(v)(v′) · Eσ

v·v′(φ), that is, the expected825

φ-value of an outcome of the profile σ with initial vertex v is equal to the P(v)-weighted average826

of the expected φ-value of the outcomes of σ with prefix v · v′ for out-neighbours v′ of v. Since827
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φ is prefix-independent, the φ-value of a play is not affected by removing the prefix v ·v′. Thus,828

we have that Eσ
v·v′(φ) = Eσ

v′(φ) for all out-neighbours v′ of v. Thus, for all strategy profiles σ,829

we see that Eσ
v (φ) =

∑
v′∈E(v) P(v)(v′) · Eσ

v′(φ). In particular, after taking the supremum and830

the infimum over the strategies of the players, we get Ev(φ) =
∑

v′∈E(v) P(v)(v′) · Ev′(φ).831

Now, we show that Ev(φ) = maxv′∈E(v) Ev′(φ) for every Player 1 vertex v ∈ V1. First,832

we show that Ev(φ) ≥ maxv′∈E(v) Ev′(φ). Suppose u ∈ E(v) is an out-neighbour of v with833

the maximum expected φ-value, that is, Eu(φ) ≥ Ev′(φ) for all v′ ∈ E(v). Since φ is834

prefix-independent, for any expected φ-value that can be achieved from u, the same expected835

φ-value can also be achieved from v by first moving the token to u, and then playing as836

if the game started from u. Thus, we get that Ev(φ) ≥ maxv′∈E(v) Ev′(φ). Now, we show837

the other direction Ev(φ) ≤ maxv′∈E(v) Ev′(φ). Starting from v, in the most general setting,838

Player 1 chooses an out-neighbour according to some probability distribution. Since φ is839

prefix-independent, the expected φ-value of v is a convex combination of the expected φ-values840

of out-neighbours of v, which is at most maxv′∈E(v) Ev′(φ).841

We omit the proof for Player 2 vertices v ∈ V2 as it is analogous to the case of Player 1842

vertices. ◀843

B Expectation problem: Missing proofs and additional details844

B.1 Additional details on trap subgames845

▶ Example 23. We compute the analogous sets for Player 2 for the restrictions shown in846

Figure 2. For i ∈ {1, 4, 5}, since Bnd(R(i)) is empty, we also have that T 2
R(i) = R(i) and847

P 2
R(i) = ∅. For i ∈ {2, 3}, we have that P 2

R(i) = R(i), and thus, T 2
R(i) = ∅.848

B.2 Statement of [13, Theorem 1]849

In a stochastic game with a prefix-independent objective φ, if there exists a vertex that is850

positive winning, then there exists a vertex v′ that is almost-sure winning.851

B.3 Proof of Proposition 4852

▶ Proposition 4. If r⃗ is a value vector that satisfies the Bellman condition, then for all853

1 ≤ i ≤ k⃗r, we have that GR(i) is a stochastic game.854

Proof. We need to show that each vertex in GR(i) has an out-neighbour in GR(i) and the855

probability distribution over the out-neighbours of probabilistic vertices in GR(i) adds up to 1.856

From the Bellman condition, it follows that each non-probabilistic vertex v in GR(i) has at857

least one out-neighbour v′ with the same r⃗-value as v, and thus v′ belongs to GR(i). The858

boundary vertices in GR(i) have themself as an out-neighbour. Finally, the out-neighbours of859

non-boundary probabilistic vertices in GR(i) are the same as in G. Hence, GR(i) is a stochastic860

game. ◀861

B.4 Proof of Proposition 5862

▶ Proposition 5. Let r⃗ be a value vector satisfying the Bellman condition. Suppose the863

strategy of Player i (i ∈ {1, 2}) is such that each time the token reaches a vertex v ∈ Vi, (s)he864

moves the token to a vertex v′ in the same r⃗-class as v. Then, with probability 1, the token865

eventually reaches a class R(j) for some 1 ≤ j ≤ k⃗r from which it never exits.866

Proof. We prove this for i = 1. The case of i = 2 is analogous. If the token exits an r⃗-class,867

it either exits from a boundary vertex or from a Player 2 vertex. From Proposition 3, each868
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time the token reaches a boundary vertex, it has a positive probability of entering a class869

with a smaller r⃗-value and a positive probability of entering a class with a greater r⃗-value.870

Furthermore, since r⃗ satisfies the Bellman condition, Player 2 can only move the token to871

a class with a greater r⃗-value. Since there are k⃗r r⃗-classes, out of which some do not have872

boundary vertices (in particular the extremal r⃗-classes do not have boundary vertices), we get873

that starting from any vertex in the game, it is the case that with probability at least (Pmin)k⃗r ,874

after changing classes at most k⃗r times, the token enters a class from which it never exits. Here,875

Pmin is the minimum probability over all edges in the game. By the second Borel-Cantelli876

lemma [27], in the infinite play, with probability 1, the token eventually enters a class from877

which it never exits. ◀878

B.5 Proof of optimality of the strategy in Lemma 9879

▶ Lemma 9. If a vector r⃗ satisfies the three conditions in Theorem 7, then s⃗ − εφ < r⃗ < s⃗ + εφ .880

In particular, we have the following:881

If r⃗ satisfies the Bellman and lower-bound conditions, then s⃗ > r⃗ − εφ .882

If r⃗ satisfies the Bellman and upper-bound conditions, then s⃗ < r⃗ + εφ .883

Proof. We formally show that the strategy σ∗
1 ensures that for all vertices v in the game G,884

we have that sv, the expected φ-value of the outcome in G starting from v, is greater than885

rv − εφ . Let σ2 be an arbitrary strategy2 of Player 2. Fixing the strategy profile σ = (σ∗
1 , σ2)886

yields a (possibly infinite) Markov chain Gσ , i.e., a probability distribution over the set of887

plays in G starting at v consistent with the strategy profile σ. We unfold Gσ to obtain an888

infinite rooted tree T with the root being the initial vertex v in G. Each vertex in the tree T889

is uniquely identified by the path from the root to that vertex, which corresponds to a unique890

prefix in the game G. For ease of presentation, we label each vertex of T by only the last891

vertex of the prefix. There is a one-to-one correspondence between the set of infinite paths in892

T starting at the root v and the set of plays in G starting from v consistent with σ. For each893

vertex u in T , if u ∈ V1 ∪ V2, then u has exactly one child in T determined by the strategy894

profile σ, and if u ∈ V♢, then the probability distribution over the out-neighbours of u in T is895

the same as in Gσ . Thus, the only branching that occurs in T is at probabilistic vertices.896

We say a vertex u in the tree T is final if all descendants of u in T (i.e., all vertices897

reachable from u in T ) belong to the same r⃗-class as u. Once the token reaches a final vertex898

u in T , i.e., once the token visits the prefix corresponding to u in G, then the token never exits899

the r⃗-class that u belongs to. That is, Player 2 never moves the token to a different r⃗-class900

and the token never reaches a boundary vertex either. Note that, in particular, every vertex901

in the r⃗-class with the greatest value is a final vertex since the class does not have boundary902

vertices, and all out-neighbours of Player 2 vertices in the class belong to the same class.903

We trim final vertices in T , i.e., for each infinite path in T beginning at the root, we keep904

the first final vertex u appearing in the path and delete all descendants of u. Let the trimmed905

tree be denoted by T̂ . For d ≥ 1, let T̂d denote the tree T̂ truncated to depth d. That is, for906

all paths in T̂ of length greater than d, delete all vertices that are at a distance greater than d907

from the root. Since T̂d is finite, starting from the root v of T̂d, with probability 1, one of the908

leaves of T̂d is reached.909 ∑
u is leaf in T̂d

pv→u = 1 (1)910

2 In this proof, we proceed by assuming that σ2 is a deterministic strategy. If σ2 is randomized, then
branching will occur not only at vertices in V♢ but also at vertices in V2 in the tree T . The remaining
observations in the proof continue to hold.
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Here, pv→u denotes the probability of reaching u from the root v in T̂d, that is, the product of911

the probabilities along the unique path from v to u.912

r⃗-value of the root in terms of leaves. Let u be a non-final vertex in T̂ . We have the913

following relation between the r⃗-values of u and its children in T̂ .914

If u ∈ V1, then ru = ru′ , where u′ is the child of u in T̂ . This holds since the strategy σ∗
1915

of Player 1 always returns a successor vertex in the same r⃗-class.916

If u ∈ V2, then ru ≤ ru′ , where u′ is the child of u in T̂ . This follows since r⃗ satisfies the917

Bellman condition of Theorem 7.918

If u ∈ V♢, then ru =
∑

u′∈E(u) P(u)(u′) · ru′ . If u is a boundary vertex, then the equation919

holds since r⃗ satisfies the Bellman condition of Theorem 7. Otherwise, u is a non-boundary920

vertex and all out-neighbours of u are in the same r⃗-class as u, and thus we have ru = ru′921

for all out-neighbours u′ of u.922

By induction on the length of paths from the root v, we get the following relation in T̂d for all923

d ≥ 1.924

rv ≤
∑

u is leaf in T̂d

pv→u · ru (2)925

s⃗-value of the root in terms of leaves. For a vertex u in the tree T̂ , let sσ
u denote the926

expected φ-value of the outcome of σ following the prefix that is the unique path from the927

root v to vertex u in T̂ . The s⃗-value of a non-final vertex u in the tree is equal to the weighted928

average of the s⃗-values of its children in the tree. Formally, we have the following from the929

Bellman equations in Proposition 1.930

If u ∈ V1 ∪ V2, then sσ
u = sσ

u′ , where u′ is the child of u in T̂ .931

If u ∈ V♢, then sσ
u =

∑
u′∈E(u) P(u)(u′) · sσ

u′ .932

By induction on the length of paths from the root v, we get the following relation in T̂d for all933

d ≥ 1.934

sσ
v =

∑
u is leaf in T̂d

pv→u · sσ
u (3)935

s⃗-values of final vertices. Recall that once the token reaches a final vertex u, the strategy936

σ∗
1 plays the almost-sure winning strategy for the threshold objective {φ > ru − εφ}. Thus,937

if u is a final vertex, then sσ
u > ru − εφ . (4)938

Eliminating non-final leaves. If T̂ is finite, then there exists d ≥ 1 such that we have939

T̂ = T̂d. Every leaf of T̂d is a final vertex. Thus, from (2), (3), and (4), we get that sσ
v > rv −εφ940

and we are done. Otherwise, suppose T̂ is not finite. Then, for all d ≥ 1, we have that some941

of the leaves of T̂d are not final. Let wmin denote the minimum φ-value of a play occurring in942

G. This exists because φ is bounded.943

sσ
u ≥ wmin (5)944

We split the sum in (3) depending on whether u is final in T̂d or not.945

sσ
v =

∑
u is final

in T̂d

pv→u · sσ
u +

∑
u is non-final

leaf in T̂d

pv→u · sσ
u (6)946

>
∑

u is final
in T̂d

pv→u · (ru − εφ) +
∑

u is non-final
leaf in T̂d

pv→u · wmin (7)947
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The inequality follows from (4) and (5). Similarly, we can split the sum in (2) depending on948

whether u is final in T̂d or not.949

rv ≤
∑

u is final
in T̂d

pv→u · ru +
∑

u is non-final
leaf in T̂d

pv→u · ru (8)950

Since the strategy σ∗
1 never moves the token to a different r⃗-class, from Proposition 5, we951

have that with probability 1, the token eventually reaches a final vertex. From (1), in T̂d, the952

probability of reaching a leaf from the root v is 1. Thus, as d increases, the probability measure953

of final leaves in T̂d increases to 1 and the probability of non-final leaves in T̂d decreases to 0.954

lim
d→∞

∑
u is final

in T̂d

pv→u = 1, lim
d→∞

∑
u is non-final

leaf in T̂d

pv→u = 0 (9)955

The following limits follow from (8) and (9).956

lim
d→∞

∑
u is final

in T̂d

pv→u · ru ≥ rv, lim
d→∞

∑
u is non-final

leaf in T̂d

pv→u · wmin = 0 (10)957

Thus, from (10), we see that as d increases, the expression in (7) becomes a better approximation958

of sσ
v . As d → ∞, we have that T̂d → T̂ , and sσ

v > rv − εφ . Since this holds for arbitrary959

strategies of Player 2, we get that sv, the expected φ-value of the initial vertex v, is at least960

rv. ◀961

B.6 Missing linear algebraic proofs from proof of Theorem 11962

▶ Remark 24. The following is the system of equations (I −QB)sB = QCsC where I is the963

m×m identity matrix.964 
1 − p1,1 −p1,2 · · · −p1,m

−p2,1 1 − p2,2 · · · −p2,m

...
...

. . .
...

−pm,1 −pm,2 · · · 1 − pm,m




s1
s2
...
sm

 =


p1,m+1 p1,m+2 · · · p1,k

p2,m+1 p2,m+2 · · · p2,k

...
...

. . .
...

pm,m+1 pm,m+2 · · · pm,k



sm+1
sm+2

...
sk

965

The coefficients pi,j depend on the specific choice of the representative boundary vertices ui966

for each S(i) for i ∈ B. However, since the weighted sum
∑

v∈E(u) P(u)(v) · sv is equal for all967

boundary vertices u belonging to the same class S(i) by Bellman, we have that the solution968

of s1, . . . , sm is independent of the chosen representatives. Hence, we are free to choose any969

representative boundary vertex from each class. ◀970

▶ Proposition 12. The matrix (I −QB) is invertible.971

Proof. We first show that limn→∞ Qn
B = 0. Then we show how this implies that I −QB is972

invertible.973

We show limn→∞ Qn
B = 0 by showing that for every row of Qm

B (where m = |B|), the sum974

of the elements in the row is strictly less than 1. Recall that for 1 ≤ i, j ≤ m, we have that pi,j975

(the ijth element of QB) denotes the probability of reaching S(j) from ui in one step, where976

ui is the representative boundary vertex chosen from S(i). The matrix QB can be viewed as a977

transition probability matrix of a Markov chain with states {M1,M2, . . . ,Mm} (corresponding978

to the value classes S(1), . . . ,S(m) respectively) and an additional sink state (corresponding979

to the value classes in C). The probability of going from Mi to Mj in one step is pi,j and the980

probability of going from Mi to the sink state in one step is 1 −
∑m

j=1 pi,j .981
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By Proposition 3, we have that for every 1 ≤ i ≤ m, either the sum of the elements in the982

ith row of QB is strictly less than 1, or there exist i1, i2 such that 1 ≤ i1 < i < i2 ≤ m and983

pi,i1 > 0 and pi,i2 > 0. In particular, we have that the sums of elements in the 1st and mth
984

rows are both strictly less than 1.985

For n ≥ 1, the ijth element of Qn
B denotes the probability of being in state Mj in the986

Markov chain starting from Mi after exactly n steps. The sum of elements of the ith row of987

QB is the probability that starting from Mi, the Markov chain does not reach the sink state988

after n steps. Since there are m non-sink states, there is a path of length at most m from989

each state to the sink state. Thus, the probability that the token reaches the sink state after990

m steps is positive.991

The probability of every transition in the Markov chain is at least 1/P̂. Thus, the probability992

that the sink state is reached after m steps is at least 1/P̂m. Thus, the sum of elements in993

each row of Qm
B is at most 1 − 1/P̂m. For all n ≥ 1, the sum of elements in each row of (Qm

B )n
994

is at most (1 − 1/P̂m)n. Thus, as n → ∞, the matrix Qmn
B → 0.995

Since limn→∞ Qn
B = 0, we have that the absolute value of every eigenvalue of QB is strictly996

less than 1. To see this, let λ be an eigenvalue of QB with eigenvector v. For all n ≥ 0, we997

have Qn
Bv = λnv. Since limn→∞ Qn

B = 0, the norm of Qn
Bv goes to 0 as n → ∞. The norm of998

λnv also goes to 0 as n → ∞, and hence, we have |λ| < 1. In particular, 1 is not an eigenvalue999

of QB, and hence, 0 is not an eigenvalue of I −QB. All eigenvalues of I −QB are non-zero,1000

and since the determinant of a matrix is the product of the eigenvalues of the matrix, we have1001

that the determinant of I −QB is non-zero. ◀1002

We show an upper bound for |D|, the absolute value of D.1003

▶ Proposition 13. The absolute value of the determinant of α(I−QB), i.e., |D|, is an integer1004

and is at most (2α)m, which is at most 2|V | · P̂|V |3 .1005

Proof. Every element of α(I−QB) is an integer, and hence, D is an integer. To see the upper1006

bound on |D|, observe some properties satisfied by α(I −QB).1007

1. Each element in α(I −QB) belongs to the set {−α,−α+ 1, . . . , 0, . . . , α− 1, α}. This is1008

because every element of (I − QB) is between −1 and 1, and because each element of1009

α(I −QB) is an integer.1010

2. For each row of α(I −QB), the sum of the absolute values of the elements in the row is at1011

most 2α. To see this, note that the elements in QB are between 0 and 1 and each row in1012

QB adds up to 1. Thus, the sum of absolute values of elements in a row of I −QB is at1013

most 2.1014

Note that the two properties hold for every minor of α(I −QB) as well.1015

We show that |D| is at most (2α)m by induction on the minors of α(I −QB). Consider1016

any 1 × 1 minor of α(I −QB), that is, an element of α(I −QB). The absolute value of such1017

a minor is at most α, which satisfies the property of being at most (2α)1. Now, consider1018

a t × t submatrix M of α(I − QB) for 1 < t ≤ m. By the induction hypothesis, every1019

(t − 1) × (t − 1) minor of M has absolute value at most (2α)t−1. Pick any row of M and1020

compute the determinant of M by expanding along this row. Since the sum of the absolute1021

values of elements in this row is at most 2α, the absolute value of the determinant of M is1022

at most (2α) · (2α)t−1, which is (2α)t. Thus, the absolute value |D| of the determinant D of1023

α(I −QB) is at most (2α)m. Since α ≤ P̂mk, m ≤ |V |, and k ≤ |V |, we have that |D| is at1024

most 2|V | · P̂|V |3 . ◀1025

Now, we show an upper bound on the denominator of Ni. Recall that Ni is the determinant1026

of the matrix obtained by replacing the ith column of α(I −QB) with αQCsC .1027

▶ Proposition 14. The denominator of Ni is at most (denφ)k−m, which is at most (denφ)|V |.1028
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Figure 3 The optimal strategy for Player 1 from v1 is different in case of maximizing probability
of FWMP(ℓ, 0) and maximizing expected φFWMP(ℓ)-value.

Proof. Observe that all elements of the matrix αQC are integers, and hence, αQCsC is1029

a column vector where each element is a weighted sum of sm+1, sm+2, . . . , sk with integer1030

coefficients. Note that all elements of α(I − QB) are integers as well. Thus, Ni is another1031

weighted sum of the form am+1sm+1+· · ·+aksk for some integer coefficients am+1, am+2, . . . , ak.1032

If written as a fraction in its reduced form, the denominator of Ni is at most the lcm of the1033

denominators of sm+1, . . . , sk. Since there are at most (k −m) distinct elements in the set of1034

denominators of sm+1, . . . , sk and each denominator is at most denφ , we have that the lcm of1035

this set is at most (denφ)k−m. Thus, the denominator of Ni is at most (denφ)k−m. ◀1036

C Some properties of window mean-payoff1037

Inductive property of windows. In [16], the inductive property of λ-windows has been1038

defined for λ = 0. Here, we generalize this property to arbitrary values of λ.1039

▶ Proposition 25 (Inductive property of λ-windows). If the λ-window starting at position i1040

closes at position j, then for all i ≤ k < j, the λ-windows π(k, j) are closed.1041

The proof for arbitrary values of λ as compared to value 0 as given in [16] is slightly more1042

involved and hence we present the proof here for completion.1043

Proof. Since the λ-window starting at position i closes at position j, we have that for all1044

i ≤ k < j, MP(π(i, k)) < λ and MP(π(i, j)) ≥ λ. The mean payoff of the infix π(i, j) is a1045

weighted average (with positive weights) of the mean payoff of π(i, k) and the mean payoff of1046

π(k, j). Since MP(π(i, k)) < λ and MP(π(i, j)) ≥ λ, this implies that MP(π(k, j)) ≥ λ. Thus,1047

the λ-window starting at position k and ending at position j is closed. ◀1048

Equivalence of FWMP(1) and Büchi objectives. Note that when ℓ = 1, the FWMP(1, λ)1049

and FWMP(1, λ) (i.e., the complement of FWMP(1, λ)) objectives reduce to coBüchi and Büchi1050

objectives respectively. To see this, let T be the set of all vertices v ∈ V such that either1051

v ∈ V1 and all out-edges of v have payoff strictly less than λ, or v ∈ V2 and at least one1052

out-edge of v has a payoff strictly less than λ. Then, a play satisfies the FWMP(1, λ) objective1053

if and only if it satisfies the Büchi(T ) objective.1054

▶ Remark 26. We note that the optimal strategy to maximize the probability of getting1055

nonnegative φFWMP(ℓ)-value may be different from the optimal strategy to maximize the1056

expected φFWMP(ℓ)-value. Consider the game shown in Figure 3 with initial vertex v1. If1057

the objective of Player 1 is to maximize the probability of satisfying FWMP(ℓ, 0), then the1058

optimal strategy is to move to v2 as that ensures a positive φFWMP(ℓ)-value with probability1059

0.9. However, if the optimal strategy is to maximize the expected φFWMP(ℓ)-value, then the1060

optimal strategy is to move to v5. ◀1061

▶ Remark 27. In an MDP, for all vertices belonging to the same MEC, the expected φFWMP(ℓ)-1062

values of all the vertices are the same, and similarly, the expected φBWMP-values of all the1063

vertices are also the same. However, this is not true for stochastic games in general. Two1064

vertices in the same MEC in a stochastic game may have different expected φFWMP(ℓ)-values1065
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v1 v2 v3−1
0

0, .5 0, .5

0
+1

Figure 4 Different vertices in the same MEC in a stochastic game may have different expected
φFWMP(ℓ)-values.

and different expected φBWMP-values. Consider the game shown in Figure 4. All three vertices1066

belong to the same MEC since each vertex is reachable from every other vertex. However, the1067

expected φFWMP(ℓ)-values of v1, v2, and v3 are −1, 0, and +1 respectively, for all values of ℓ.1068

The expected φBWMP-values are also −1, 0, and +1 respectively. ◀1069

▶ Remark 28 (Achieving supremum for expected φFWMP(ℓ) and φBWMP objectives.). The φFWMP(ℓ)-1070

value of a play is the supremum λ such that every λ-window is closed in at most ℓ steps.1071

Since there are finitely many sequences of edge-payoffs of length at most ℓ, the supremum is1072

achieved for the φFWMP(ℓ) objective for all plays π, and thus can be replaced by max. The1073

supremum for φBWMP-value may not be reached in general, as Player 2 can keep the window1074

open for increasing window lengths where the supremum is approached asymptotically. ◀1075

D Expected fixed window mean-payoff value: Missing proofs and1076

additional details1077

D.1 Reduction to simple stochastic game1078

▶ Lemma 29. The expected φFWMP(ℓ)-value problem is at least as hard as simple stochastic1079

games.1080

Proof. The reduction goes as follows. Recall that in a simple stochastic game, Player 11081

wins from a vertex v if and only if she has a strategy that ensures that starting from v, the1082

probability that the token eventually reaches the target vertex vtarget is greater than 1
2 . We1083

assume without loss of generality that vtarget is absorbing, that is, the only out-neighbour of1084

vtarget is vtarget itself.1085

Given a simple stochastic game GSSG, we construct a new stochastic game G such that1086

Player 1 reaches vtarget in GSSG from v with probability greater than 1
2 if and only if the1087

expected φFWMP(ℓ)-value of v in G is greater than 1
2 .1088

The set of vertices and edges in G are the same as in GSSG. We let the edge-payoff of the1089

self-loop of vtarget be 1 in G, and let the edge-payoff of every other edge in G be 0. Thus, the1090

probability of reaching vtarget from v in GSSG is equal to the expected φFWMP(ℓ)-value of v in1091

G. Hence, the expected φFWMP(ℓ)-value problem is at least as hard as simple stochastic games,1092

which are known to be in UP ∩ coUP. ◀1093

D.2 NEXP ∩ coNEXP upper bound1094

The expected φFWMP(ℓ)-value problem can be reduced to the expected liminf-value problem [20]1095

on an exponentially larger game. This gives an NEXP ∩ coNEXP algorithm for expected1096

φFWMP(ℓ) since the expected liminf-value problem for stochastic games is in NP ∩ coNP [20].1097

▶ Lemma 30. The expected φFWMP(ℓ)-value problem is in NEXP ∩ coNEXP.1098

Proof. Starting with a stochastic game G = ((V,E), (V1, V2, V♢),P, w), we construct an1099

exponentially larger stochastic game G′ = ((V ′, E′), (V ′
1 , V

′
2 , V

′
♢),P′, w′) such that the expected1100

φFWMP(ℓ)-value of the initial vertex in G is at least λ if and only if the expected liminf-value of1101

the initial vertex in the constructed game G′ is at least λ.1102
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Intuitively, each vertex in G′ is a history of the last ℓ vertices seen in G, and thus, the game1103

G′ has exponentially many vertices than G. The value of a play in G depends on the payoffs1104

seen in a sliding window of length ℓ. Since each vertex in G′ stores the ℓ-length history, the1105

value of a play in G′ can be described simply in terms of a liminf objective.1106

We construct G′ as follows. The set V ′ of vertices in G′ is equal to V ℓ+1, and thus,1107

there are |V |ℓ+1 vertices in G′. We have a label of length ℓ + 1 vertices for each vertex in1108

V ′. For all 1 ≤ i ≤ ℓ + 1 and v′ ∈ V ′, let Li(v′) denote the ith coordinate of v′. That is,1109

v′ = (L1(v′), L2(v′), . . . , Lℓ+1(v′)). Each vertex v′ ∈ V ′ belongs to V ′
1 , V ′

2 , or V ′
♢ depending1110

on whether the last coordinate of v′ (i.e., Lℓ+1(v′)) belongs to V1, V2, or V♢. Formally, we1111

have that v′ ∈ V ′
1 if Lℓ+1(v′) ∈ V1, and v′ ∈ V ′

2 if Lℓ+1(v′) ∈ V2, and v′ ∈ V ′
♢ if Lℓ+1(v′) ∈ V♢.1112

Next, we describe the edges in G′. If v′ is a vertex in G′, then for all u ∈ V such that u1113

is an out-neighbour of Lℓ+1(v′) in G, we have that (L2(v′), L3(v′), . . . , Lℓ+1(v′), u) is an out-1114

neighbour of v′ in G′. Formally, E′(v′) = {(L2(v′), L3(v′), . . . , Lℓ+1(v′), u) | u ∈ E(Lℓ+1(v′))}.1115

Intuitively, we pop out the vertex in the first coordinate and push in a new vertex in the last1116

coordinate. Note that the degree of vertex v′ in G′ is equal to the degree of Lℓ+1(v′) in G.1117

Now, we define the probability distribution P′(v′) over probabilistic vertices in G′. If v′ is1118

a probabilistic vertex, i.e., if v′ ∈ V ′
♢, then for all out-neighbours u′ ∈ E′(v′) of v′, we have1119

that P′(v′)(u′) = P(Lℓ+1(v′))(Lℓ+1(u′)).1120

Finally, we define the payoffs w′(e′) of edges e′ in G′. All edges coming out of the same1121

vertex in G′ are given the same payoff. That is, the edge-payoffs of (v′, u′
1) and (v′, u′

2) are1122

equal. The edge-payoff of edges out of v′ is determined by the label L1(v′)L2(v′) · · ·Lℓ+1(v′)1123

of v′. The payoff depends on whether this label is a sequence of edges in G, that is, if1124

(Li(v′), Li+1(v′)) ∈ E for all 1 ≤ i ≤ ℓ. For all v′ ∈ V ′, if the label of v′ is a sequence of edges1125

in G, then for all edges e′ out of v′, i.e., for all e′ ∈ E′(v′), the payoff w′(e′) of e′ is equal to1126

the maximum λ such that the λ-window starting at L1(v′) is closed at or before the end of1127

the label. Otherwise, if it is not a sequence of edges in G, then for all edges e′ out of v′, we1128

define the payoff of w′(e′) to be 0.1129

If the initial vertex in G is v ∈ V , then let the initial vertex in G′ be (v, v, . . . , v), where1130

the tuple has length ℓ+ 1 as stated above. Observe that there is a one-to-one correspondence1131

between plays in G and plays in G′. Starting with a play π in G, we show how to obtain the1132

corresponding play π′ in G′. We start with v in π and (v, v, . . . , v) in π′. Each time we read1133

a vertex, say u, in π, the next vertex in π′ can be obtained by considering the label of the1134

last vertex in π′ until before u is read in π, popping its first coordinate and pushing the new1135

vertex u in its last coordinate. As a consequence, after the first ℓ steps in G′, every vertex1136

visited in G′ has a label that is a sequence of the last ℓ edges in G. Conversely, given a play π′
1137

in G′, one can project π′ to the last component to obtain the corresponding play π in G.1138

If λ is such that, eventually, every λ-window in π closes in at most ℓ steps, then there are1139

infinitely many edges in π′ with payoff at least λ, in which case the liminf-value of π′ is at least1140

λ. Conversely, if λ is such that there are infinitely many open λ-windows of length ℓ in π, then1141

there are infinitely many edges in π′ with payoff less than λ, and the liminf-value of π′ is less1142

than λ. The correspondence between plays in the two games, gives a correspondence between1143

strategies between the games. The probability functions P and P′ of G and G′ respectively are1144

defined such that once we fix strategies of the players in G, and the corresponding strategies in1145

G′, then the probability distribution of sets of plays in G is equal to the probability distribution1146

of the corresponding sets of plays in G′. Thus, the expected φFWMP(ℓ)-value of a vertex v in G1147

is equal to the expected liminf-value of (v, v, . . . , v) in G′.1148

Since the expected liminf-value problem is in NP∩coNP [20] and the size of G′ is exponential1149

in the size of G, we have that the expected φFWMP(ℓ)-value problem is in NEXP ∩ coNEXP. ◀1150
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D.3 Proof of Lemma 151151

▶ Lemma 15. The expected φFWMP(ℓ)-value si of vertices in a class S(i) without boundary1152

vertices is equal to the mean payoff of some sequence of ℓ or fewer edges in S(i). That is, si is1153

of the form 1
j (w(e1) + · · · + w(ej)) for some j ≤ ℓ and edges e1, e2, . . . , ej.1154

Proof. Let σ∗
1 and σ∗

2 be optimal strategies of Player 1 and Player 2 respectively for the1155

expected φFWMP(ℓ) objective in S(i) from an initial vertex v0 in S(i). By definition, we have1156

that the expected φFWMP(ℓ)-value of the outcome of this strategy profile is equal to si. We can1157

in fact show a stronger statement: starting from v0, with probability 1, the φFWMP(ℓ)-value of1158

the outcome of this strategy profile is equal to si. If not, then with positive probability, the1159

φFWMP(ℓ)-value of the outcome is greater than si and with positive probability, the φFWMP(ℓ)-1160

value of the outcome is less than si. Since φFWMP(ℓ) is a prefix-independent objective, it follows1161

that there exists another vertex v′ from which Player 1 can ensure with probability 1 that the1162

φFWMP(ℓ)-value of the outcome is greater than si. It follows that the expected φFWMP(ℓ)-value1163

of v′ is greater than si, which contradicts our hypothesis that the expected φFWMP(ℓ)-value of1164

each vertex in S(i) is exactly si.1165

Now, we show that si takes the form mentioned in the statement of Lemma 15. Since1166

φFWMP(ℓ) is a prefix-independent objective, the φFWMP(ℓ)-value of the outcome π only depends1167

only on inf(π), the set of vertices visited infinitely often in π. For every probabilistic vertex v1168

in inf(π), each out-edge of v is also chosen infinitely often in π. Thus, the φFWMP(ℓ)-value of1169

the outcome is equal to supremum λ such that every λ-window closes in at most ℓ steps. This1170

is the mean payoff of a sequence of at most ℓ edges that appears infinitely often in π. This1171

gives that si is equal to the mean payoff of some j edges in S(i) for some 1 ≤ j ≤ ℓ. ◀1172

D.4 An example illustrating the complexity of computing expected1173

φFWMP(ℓ)-value1174

▶ Example 31. We show that the value vector r⃗ in Example 2 for the game in Figure 1 satisfies1175

all the conditions of Theorem 7 for the φFWMP(ℓ) objective with ℓ = 2. The Bellman condition1176

can be verified by analysing the game graph. To check the lower-bound condition, we check1177

if Player 1 satisfies the threshold Boolean objectives {φFWMP(ℓ) > ri − εFWMP} almost surely1178

from every vertex in each T 1
R(i) (computed in Example 6). Since T 1

R(2) = ∅, the condition1179

holds vacuously. For i ∈ {1, 3, 5}, the game T 1
R(i) consists of only one vertex with a self-loop1180

of value ri, and thus the threshold objective is satisfied almost surely. Similarly, for T 1
R(4),1181

there is only one play where payoff 0 and 2 occur alternatingly, and it has φFWMP(ℓ)-value1182

equal to 1 for ℓ = 2. The upper-bound condition can be verified analogously. Thus, we have1183

that the vector r⃗ is equal to the expected φFWMP(ℓ)-value vector s⃗. ◀1184

E Expected bounded window mean-payoff value: Additional details1185

A play π does not satisfy BWMP(λ) if and only if for every suffix of π, for all ℓ ≥ 1, the suffix1186

contains an open λ-window of length ℓ.1187

▶ Remark 32. In [16], it has been shown that for non-stochastic two-player games, there1188

exists a large enough window length (ℓmax = (|V | − 1) · (|V | · W + 1), where W is maximum1189

absolute edge payoff in the game) such that for all vertices v in the game, it is the case that1190

v is winning for the BWMP(0) objective if and only if it is winning for the FWMP(ℓmax, 0)1191

objective. We remark that in general, there does not exist a window length ℓ such that the1192

expected φFWMP(ℓ)-value of a vertex is equal to the expected φBWMP-value of the vertex. To1193

see this, consider the game in Figure 5 (from [16]). We have that the expected φBWMP-value1194
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v1 v2

−1

+1
0

Figure 5 expected φBWMP value of both vertices is zero, but the expected φFWMP(ℓ)-value of both
vertices is strictly negative for all ℓ ≥ 1.

of both vertices in this game is zero. However, the expected φFWMP(ℓ)-value of both vertices is1195

equal to −1/ℓ, which is strictly negative.1196

E.1 Proof of Lemma 191197

▶ Lemma 19. The expected φBWMP-value si of vertices in a class S(i) without boundary1198

vertices is equal to the mean-payoff value of a simple cycle in S(i). That is, si is of the form1199

1
j (w(e1) + · · · + w(ej)) for some j ≤ |V | and edges e1, e2, . . . , ej of a simple cycle.1200

Proof. Since S(i) is a class without boundary vertices, the game GS(i) is obtained by simply1201

restricting G to the class S(i). The expected φBWMP-value of each vertex in S(i) in the game G1202

is equal to si, which is also equal to the expected φBWMP-value of each vertex in the restriction1203

game GS(i). Thus, it is sufficient to consider the game GS(i). Recall from the proof of Lemma 91204

that an optimal strategy of Player 1 for the expected φBWMP-objective is to follow an optimal1205

strategy for the almost-sure satisfaction of the BWMP objective, for which it is known that1206

memoryless strategies suffice [26]. We show a useful claim that holds for all memoryless1207

strategies σ1 of Player 1. In particular, the claim also holds for optimal memoryless strategies1208

of Player 1 for which the expected φBWMP-value si is attained.1209

Let σ1 be a memoryless strategy of Player 1 in GS(i). Fixing the strategy σ1 in the game1210

GS(i) gives an MDP Gσ1
S(i) with the same set of vertices as GS(i). For ease of notation, we denote1211

this MDP by M. The MDP M can be decomposed into maximal end-components (MECs).1212

For every MEC T in M, let γT denote the mean payoff of the simple cycle in T with the1213

minimum mean payoff. The claim is the following: for every MEC T in M, in the MDP MT1214

obtained by restricting M to T , the expected φBWMP-value of every vertex is the same and1215

is equal to γT . In other words, if the token reaches a MEC T in the MDP M and Player 21216

chooses to always stay in T and never exit, then the expected φBWMP-value of the outcome is1217

equal to γT . We prove this claim later.1218

Now, we show that this observation implies that si is equal to the mean payoff of a simple1219

cycle in S(i). Recall that for all strategies of Player 2, the outcome in M almost-surely ends1220

up in an MEC of M from which it never exits. Moreover, since φBWMP is a prefix-independent1221

objective, the φBWMP-value of a play only depends on the MEC that the play ends up in.1222

Thus, to obtain the expected φBWMP-value of vertices in the MDP M, we can collapse each1223

MEC M , that is, we replace each MEC M with a single vertex vM . The out-edges of vM are1224

the union of the out-edges of vertices in M to vertices not in M , The in-edges of vM are the1225

union of the in-edges of vertices in M from vertices not in M . In addition, we have a self-loop1226

on vM with payoff γT . The resulting MDP with the collapsed MECs is known as the MEC1227

quotient of M [3, 8, 10, 35]. The expected φBWMP-value of vertices in the MDP M is equal to1228

the expected mean-payoff value of the corresponding vertices in the MDP with the collapsed1229

MECs.1230

In particular, when the strategy σ1 of Player 1 is an optimal strategy, we get that every1231

vertex in M has the same expected φBWMP-value. That is, for each MEC T in M, we have1232

that γT is at least si, and moreover, from each vertex in M, Player 2 has a strategy to1233

almost-surely eventually reach a MEC with value si. Thus, we get that si is equal to the mean1234
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payoff of a simple cycle in M. Since every simple cycle in M is also a simple cycle in S(i), we1235

have that si is equal to the mean payoff of a simple cycle in S(i).1236

Proof of claim. It remains to prove our claim. Recall that for a MEC T in the MDP1237

M, we denote by MT the restriction of M to T , and we want to show that for all MECs1238

T in M, the expected φBWMP-value of every vertex in MT is equal to γT . First, we show1239

that the expected φBWMP-value of every vertex in MT is at most γT . To do this, we show1240

that even if we weaken Player 2, the expected φBWMP-value of the outcome is at most γT .1241

Formally, we weaken Player 2 by replacing every vertex v ∈ V2 in MT that belongs to Player 21242

with a probabilistic vertex with a uniform distribution over all out-neighbours of v. This1243

yields a Markov chain which we denote by CT . Since MT is an MEC, we have that CT is a1244

single bottom strongly-connected component (BSCC). From [8], it follows that the expected1245

φBWMP-value of the outcome in a BSCC is equal to the mean payoff of the cycle with the1246

minimum mean payoff in the BSCC. Thus, in the MDP MT as well, Player 2 can ensure from1247

every vertex in MT that the expected φBWMP-value of the outcome is at most γT .1248

Now, we show the other direction, that is, the expected φBWMP-value of every vertex in1249

MT is at least γT . Here, we strengthen Player 2 by replacing every probabilistic vertex in1250

MT with a Player 2 vertex to obtain a non-stochastic one-player game GT . We show that1251

despite also having control over all probabilistic vertices, for all strategies of Player 2 in GT ,1252

the φBWMP-value of the outcome in GT is at least γT . Since MT is a MEC, we have that GT1253

is strongly connected and that Player 2 has a strategy to reach every vertex in GT from every1254

other vertex in GT . Since φBWMP is prefix-independent, this implies that the φBWMP-value1255

of every vertex in GT is the same. For ease of analysis, we add −γT to every edge payoff in1256

GT to obtain a new one-player game ĜT . We have that the φBWMP-value of vertices in the1257

original game GT is at least γT if and only if the φBWMP-value of vertices in the offset game1258

ĜT is nonnegative. In the offset game ĜT , every simple cycle has nonnegative mean payoff,1259

and therefore, every simple cycle in ĜT also has nonnegative total payoff. We show that every1260

play in ĜT has φBWMP-value that is nonnegative.1261

Let wmin denote the minimum edge payoff occurring in the offset game ĜT . Since there1262

is a simple cycle in ĜT with total payoff equal to zero, it cannot be the case that wmin is1263

positive. If wmin is equal to zero, then we have that every edge in ĜT has nonnegative payoff,1264

and therefore every play in ĜT has φBWMP-value that is nonnegative. Now, suppose that wmin1265

is strictly negative. Let π be a play in ĜT . Note that for every suffix π(x,∞) of π, for every1266

finite prefix π(x, y) of π(x,∞), the total payoff of the segment π(x, y) is bounded below by1267

|V | · wmin. Indeed, if the length of π(x, y) is strictly less than |V |, then the total payoff of the1268

segment is at least |π(x, y)| ·wmin, which is greater than |V | ·wmin. Otherwise, if the length of1269

π(x, y) is at least |V |, then it contains a simple cycle with nonnegative total payoff. Deleting1270

this simple cycle from π(x, y) gives a shorter play whose total payoff is at most the total1271

payoff of π(x, y). Thus, for all ε < 0, we have that all ε-windows in π close in at most |V |·wmin
ε1272

steps, and thus, the φBWMP-value of the play π is greater than ε. Thus, the φBWMP-value of1273

every vertex in the offset game ĜT is at least zero, and the φBWMP-value of every vertex in the1274

one-player game GT is at least γT . Hence, for all strategies of Player 2 in the MDP MT , the1275

expected φBWMP-value of the outcome in MT is also at least γT .1276

This shows that the expected φBWMP-value of every vertex in MT is equal to γT and1277

concludes the proof of the observation. ◀1278
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